S-26-31 (Red Bluff Road) Bridge Replacement over Tod Swamp Horry County, SC Geotechnical Baseline Report

May 7, 2024 | SCDOT Project ID: P041157

Terracon Project No.: ER23P202-Rev1

Prepared for:

HNTB Corporation (HNTB) 343 E. Six Forks Road, Suite 200 Raleigh, NC 27609

1246 Howard Avenue Myrtle Beach, SC P (843) 286 - 2500 Terracon.com

May 7, 2024

HNTB Corporation (HNTB) 343 E. Forks Road, Suite 200 Raleigh, NC 27609

Attn: Mr. Spencer Franklin, PE, Senior Vice President

P: 919-546-8997

Re: Geotechnical Baseline Report

S-31-26 Bridge Replacement over Tod Swamp

Horry County, South Carolina SCDOT Project ID.: P041157

Terracon Project No.: ER23P202-Rev1

Dear Mr. Franklin:

Terracon Consultants Inc. (Terracon) has completed the exploration, testing and limited engineering analysis services for the above referenced project. The services were conducted in general accordance with our Task Order Number 001 (dated May 25, 2023).

Introduction

HNTB Corporation (HNTB) has contracted Terracon to perform subsurface exploration, laboratory testing, and very preliminary engineering recommendations for the S-26-31 Bridge Replacement over Tod Swamp in Horry County, South Carolina. We understand the proposed bridge intends to replace the existing bridge over Tod Swamp. The results of subsurface exploration and laboratory testing has been separately presented in a Geotechnical Subsurface Data Report (GSDR). For convenience, those data are also provided here in this Geotechnical Baseline Report (GBR) along with a characterization of the subsurface conditions for the project. Very preliminary geotechnical considerations are associated with the requested scope of study and are included in this GBR. This GBR was prepared in general accordance with the 2022 SCDOT Geotechnical Design Manual (GDM).

Project Description

The project site is located on the S-26-31 (Red Bluff Road) crossing over Tod Swamp in Horry County, South Carolina. Site location and exploration plans are presented in Appendix A of this report. Based on the undated conceptual plans provided by HNTB via e-mail on February 9, 2024, the replacement bridge will be constructed on essentially the same alignment as the current bridge. The existing bridge is a single-span structure and appears to be supported by timber pile foundations.

Geotechnical Testing

The geotechnical exploration for this project was performed between December 19, 2023 and January 5, 2024. The results of our field work and our associated laboratory testing are included in Appendices A and B.

Field Exploration

Our field exploration consisted of the following:

- Two (2) Standard Penetration Test (SPT) Borings (S-26-31-1 and S-26-31-2)
- One (1) offset boring of SPT S-26-31-Bulk for bulk sample collection
- One (1) Downhole Shear Wave Velocity Test located in Boring S-26-31-1
- Two (2) Cone Penetration Test soundings (S-26-31-1C and S-26-31-2C)

The tests were performed at the approximate locations as approved by SCDOT. A description of our testing methods and graphical logs outlining the soil conditions at each test location are presented in Appendix A. The test locations were established in the field by Terracon and surveyed by Cox Surveyors after completion. Photographs of the exploration equipment set up at each test location are provided in Appendix A.

Laboratory Testing

The following laboratory tests were performed on the soil samples collected at the site.

- Eleven (11) Natural Moisture Content Tests
- Five (5) Atterberg Limits Tests
- Five (5) Fines Content Tests
- Four (4) Grain Size Tests with Hydrometer
- One (1) Remolded, Consolidated-Undrained (CU) Triaxial Compression Test with Pore Pressure Readings
- One (1) Standard Proctor Test
- One (1) Corrosivity Suite Tests (pH, chloride content, sulfate content, and resistivity tests)

The scope of the laboratory testing frequency was determined by the SCDOT. The laboratory testing assignment was performed by our engineers. The laboratory procedures and results of the laboratory tests are presented in Appendix B.

Subsurface Conditions

Regional Geology

The bridge site is located on route S-26-31, approximately 6.25 miles southwest of the town of Longs in Horry County, South Carolina. The site is in the Lower Coastal Plain Physiographic Province of South Carolina. The Lower Coastal Plan Subunit is bounded by the Middle Coastal Plain Subunit to the west and the Atlantic Ocean to the east, and formed during the Quarternary Period which can be further subdivided into the Pleistocene Epoch and Holocene Epoch. Based on mapping, the soils underlying the site are primarily those of the Pleistocene Epoch (10 thousand years ago to 1.6 MYA).

The Pleistocene Epoch is marked by the deposit of surface soils, the formation of the Carolina Bays and scarps found along the East Coast due to the fluctuation of the sea level. Barrier islands and flood plains along major rivers were formed during the Holocene Epoch (present to 10 thousands years ago). Preceding the Quarternary Period during the Eocene Epoch (53 to 36.6 MYA) of the Paleogene Period, limestone was deposited in the Lower Coastal Plain. The bridge end embankments contain existing fill above the alluvial soils.

Soil Stratification

The soils encountered at this site consist of fill in the upper approximately 7 feet, followed by alluvium soils down to approximately 17 to 22 feet below ground surface and coastal plain, shell laden soils, to a maximum exploration depth of 109 feet below the existing ground surface. Additional shell laden coastal plain soils were encountered to a depth of 100 feet below the ground surface. A summary of subsurface strata found during subsurface exploration is provided in the table below.

Geology	Approximate Elevation of Layer Bottom (ft, NAVD88)	USCS Soil Type	Measured Field N Value	Plasticity Index	Fines Content
Asphalt	22 to 23				
Fill	16 to 17	SC, SP-SM	4 to 12	11	5 to 27
Alluvium	2 to 7	SC, SP, SM	0 to 13	NP to 22	11 to 38
Coastal Plain - Shell Laden	-76 to -77	SM, SP-SM	2 to 35	NP	11 to 32

Seismic Considerations

According to SCDOT Seismic Design Specifications for Highway Bridges version 2.0, the proposed bridge will be an Operational Classification II (OC II). Per SCDOT GDM 2022, the proposed bridge shall be designed to meet the performance limits for an OC II bridge. The proposed structure is a single span and does not require a check of seismic displacement demand, capacity or ductility per Section 3.13.1 of the SCDOT Seismic Design Specifications for Highway Bridges.

Acceleration Design Response Spectrum (ADRS)

The shear wave and compression wave velocity results, as measured at Boring S-26-31-1 using downhole seismic tests, were provided to SCDOT. SCDOT used these velocity measurements to develop Acceleration Design Response Spectrum (ADRS) curves by determining the seismic hazard and evaluating the local site effects on the response spectra.

SCDOT provided "3-Point Acceleration Design Response Spectrum" curves along with a table that included pseudo-spectral accelerations (PSA) for 5% critical damping and at selected frequencies, consistent with a Geologically Realistic (B-C Boundary) condition (shear wave velocity, Vs = 2,500 feet per second). PSA values were provided for the:

- Functional Evaluation Earthquake (FEE): 15% probability of exceedance in 75 years
- Safety Evaluation Earthquake (SEE): 3% probability of exceedance in 75 years 3

The table below provides the maximum considered earthquake peak ground acceleration (PGA), the short period acceleration (SDS), and one-second period acceleration (SD1) for the FEE and SEE earthquakes at the ground surface. A copy of the "3-Point Acceleration Design Response Spectrum" provided by SCDOT is included in Appendix C.

Seismic Design Parameter	FEE	SEE
PGA	0.13	0.41
S _{DS}	0.23	0.83
S _{D1}	0.08	0.30

Seismic Soil Strength Loss (SSL) Susceptibility Screening

SSL Susceptibility Screening Criteria presented in Chapter 13 of the 2022 SCDOT GDM were reviewed with respect to subsurface conditions encountered. The majority of the soils were found to be sand-like with some near surface clay-like soils. The relatively high PGA and the presence of loose sands found below the groundwater table indicate there is a need for SSL susceptibility evaluation.

Design and Construction Considerations

Foundations

Driven prestressed concrete piles, steel H-piles or steel pipe piles are suitable for structural support for the bridge end bents depending on the anticipated loading. The subsurface soils are generally loose to medium dense sands, satisfying the prestressed concrete pile criteria from Figure 19.2-1 of the SCDOT Bridge Design Manual. However, while not encountered during our field exploration, dense cemented lenses of varying depth and thickness are characteristic of the Horry County area and prestressed concrete piles may not be able to penetrate these lenses without the addition of a steel pile extension. Assuming redundant piles, Table 9-3 GDM 2022 allows using a resistance factor of 0.5 for redundant piles with wave equation, and 0.65 for redundant piles with PDA and calibrated wave equation.

According to the conceptual bridge plans provided by HNTB, up to approximately five feet of fill is anticipated at the end bent embankments. Considering the near surface clayey sands encountered during our exploration, it is anticipated that foundations will be installed after any approach embankment remediation or widening takes place. If for any reason embankment fill will be placed after installing foundation piles, the pile design must account for any downdrag loads subjected to the piles.

We generally encountered loose to medium dense sands throughout our exploration depths, as seen in the Soil Stratification section. Therefore, we expect relatively consistent tip elevations across the site. For this site and the subsurface conditions encountered, we anticipate that piles will need to be driven to a target depth and piles may not encounter practical refusal during driving operations Pile drivability using the wave equation should be performed along with estimating pile stresses during driving and, in general, verifying the ability of the Contractor's selected hammer to drive the piles to the desired penetration while preventing overstressing.

Corrosion and Deterioration

Corrosion testing was performed on a composite sample obtained from split spoons in the upper 10 feet. Corrosion testing included pH, resistivity, chlorides, and sulfates content as summarized in Table below. Corrosion test results are included in Appendix B.

Corrosion Test	Results Boring S-26-31-1 and S-26-31-2 Composite Sample from 1 ½ to 10 feet	Indication of Corrosivity ¹
рН	7.4	Less than 5.5
Resistivity	1,649 ohm-cm	Less than 2,000 ohm-cm

Corrosion Test	Results Boring S-26-31-1 and S-26-31-2 Composite Sample from 1 ½ to 10 feet	Indication of Corrosivity ¹
Chloride	380 ppm	Greater than 500 ppm
Sulfate	157 ppm	Greater than 1,000 ppm

1. SCDOT GDM 2022 - Table 7-34.

Based on the criteria for electro-chemical properties in the GDM Section 7.18, the electro-chemical classification of the project site is aggressive. Interpretation of these data should be communicated with the project's structural engineer.

Embankment Construction

Based on the conceptual plans by HNTB, the vertical profile is being raised with approximately 5 feet of additional fill. A bulk sample was obtained near the southern end bent from the top 5 feet of existing embankment material. Per our scope one bulk sample was tested for soil classification and was also remolded to 95% of the Standard Proctor prior to being tested under CU Triaxial Compression. Test results are presented in Appendix B and are summarized in the Table below.

Sample		Offset	Sample		Compaction		Shear Strength	
Sample No.	Station ¹	Station ¹ (ft) Depth Soil (ft) Type	Depth		Optimum Moisture (%)	Max Dry Density (pcf)	c', c (psf)	φ', φ (°)
S-26- 31-Bulk	556+85	8R	1 ½ – 6	SC	15.3	111.7	207, 236	27, 17

1. Plans provided after field exploration and surveying. These values are estimated based on Google Earth ®.

Settlement may occur due to the added weight of the embankment fill. The majority of this settlement is anticipated to take place within the relatively weak alluvium soils. Because the overall profile is predominantly sandy, we expect most settlement will take place during construction and estimate a duration of several months. Settlement of the alluvium soils may take longer resulting in some differential settlement between the bridge and embankment over time.

Based on Chapter 13 of the 2022 SCDOT GDM and the findings of the SSL analysis, the embankment instability should be considered. The instability cases addressed in Table 13-1 of the GDM should be evaluated for seismic instability and/or flow failure. Depending on the results of seismic slope stability, Newmark Displacement Analysis may be performed to obtain the global instability deformations, as referenced in Table 10-1 GDM. The global instability deformations should be discussed with the performance limits to be developed by

Geotechnical Baseline Report S-26-31 Bridge Replacement over Tod Swamp | Horry County, SC May 7, 2024 | Terracon Project No. ER23P202-Rev1 | SCDOT Project ID: P041157

the design team, as detailed in Section 10.8.2.2, and mitigation measures may be recommended if necessary.

General Comments

The analysis and recommendations presented in this report are based upon the data obtained from the borings performed at the indicated locations and from other information discussed in this report. This report does not reflect variations that may occur between borings, across the site, or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. If variations appear, we should be immediately notified so that further evaluation and supplemental recommendations can be provided.

The scope of services for this project does not include either specifically or by implication any environmental or biological assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

This report has been prepared for the exclusive use of SCDOT for specific application to the project discussed and has been prepared in accordance with generally accepted geotechnical engineering practices. No warranties, either express or implied, are intended or made. Site safety, excavation support, and dewatering requirements are the responsibility of others. In the event that changes in the nature, design, or location of the project as outlined in this report are planned, the conclusions and recommendations contained in this report shall not be considered valid unless Terracon reviews the changes and either verifies or modifies the conclusions of this report in writing.

Geotechnical Baseline Report S-26-31 Bridge Replacement over Tod Swamp | Horry County, SC May 7, 2024 | Terracon Project No. ER23P202-Rev1 | SCDOT Project ID: P041157

Closure

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report or we may be of further service, please contact us.

Sincerely,

Terracon Consultants, Inc.

Kara Fugate, P.E.
Senior Engineer
SC Registration No. 41532

Wendy Parsons, P.E. Project Engineer SC Registration No. 20962

Reviewed by Terracon's Authorized Project Reviewer: Abdul Q. Fekrat, PhD, P.E.

Appendix A Field Exploration

Exhibit A-1 – Site Location Map

Exhibit A-2 – Exploration Plan

Exhibit A-3 – Subsurface Profile

Exhibit A-4 - Summary of Boring Data and

Geoscoping Form (3 Pages)

Exhibit A-5 – Field Exploration Description (3 Pages)

Exhibit A-6 – Soil Description Terms

Exhibit A-7 – Soil and Rock Symbols

Exhibit A-8 – Boring and Sounding Logs (11 Pages)

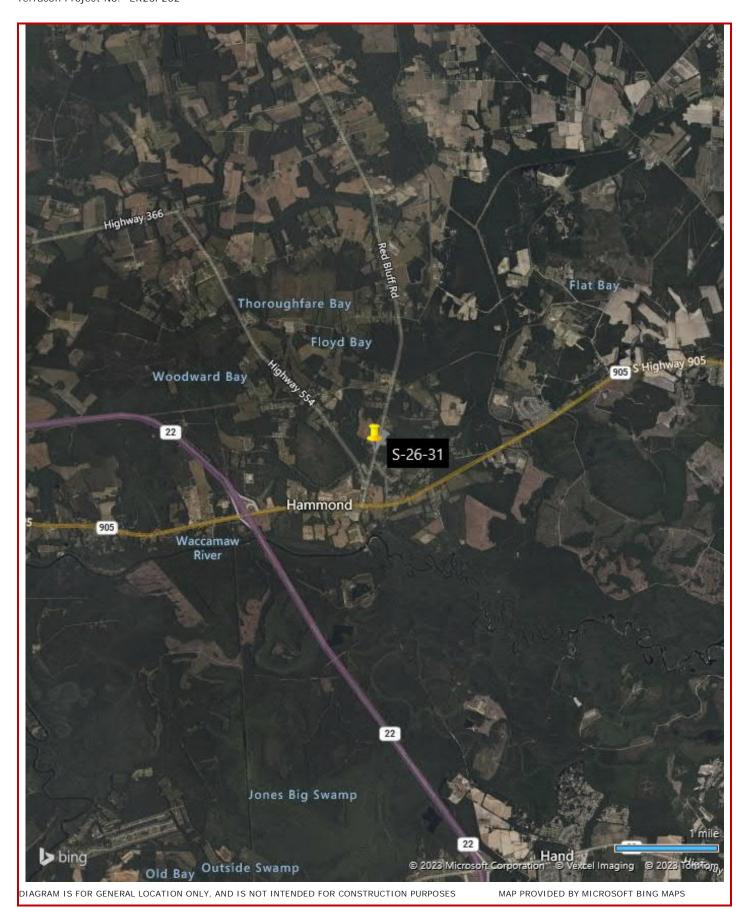
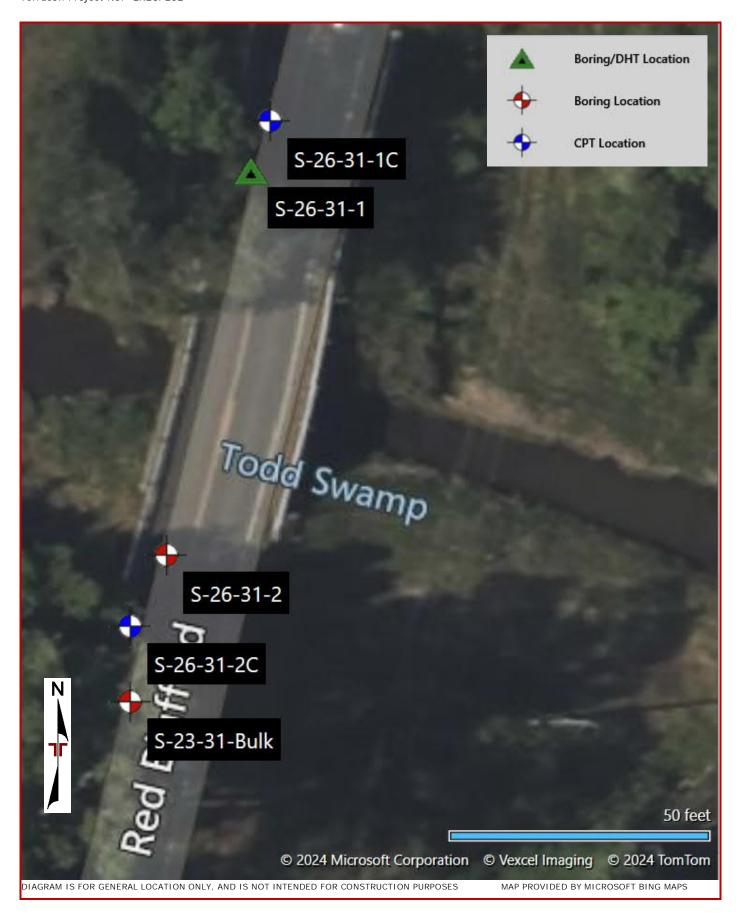
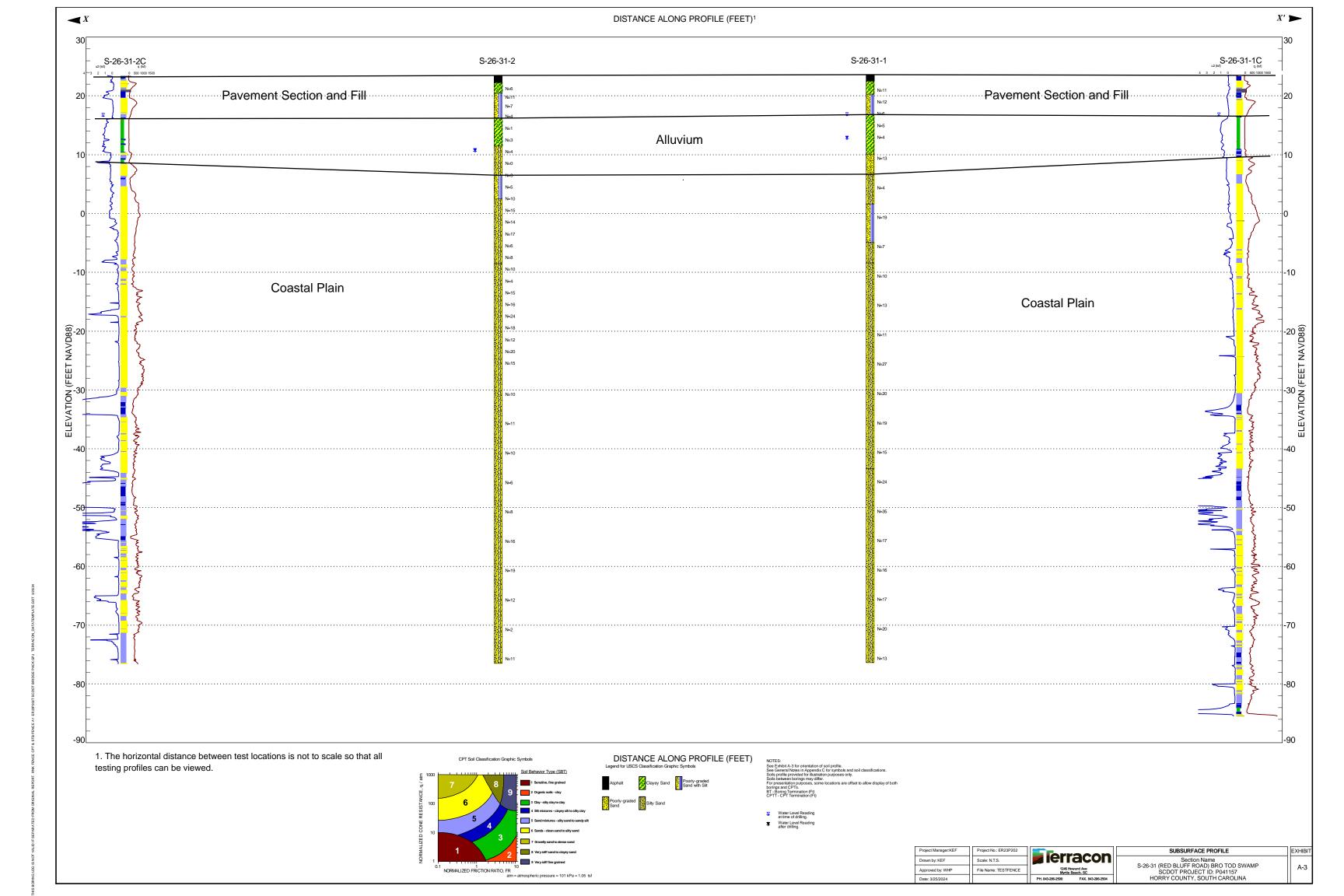

Exhibit A-9 – Grout Logs (3 Pages)

Exhibit A-10 – Drill Rig Photograph Log (2 Pages)

Exhibit A-11 - Geophysical Testing Results


Note: All exhibits are one page unless noted above.



Exploration Plan - Exhibit A-2 S-26-31 | Horry County, SC Terracon Project No: ER23P202

Summary of Boring Data

Boring No.	Ground Elevation ft.	Test Depth ft.	Northing	Easting	Latitude	Longitude	Station ¹	Offset ¹
S-26-31-1	23.63	100	3754549.68	699855.61	33.912422	-78.838250	555+85	9.5R
S-26-31-2	23.51	100	3754527.17	699851.09	33.912219	-78.838303	556+65	8.5R
S-26-31-1C	23.58	109	3754552.59	699856.66	33.912448	-78.838238	555+65	9R
S-26-31-2C	23.50	100	3754522.94	699850.16	33.912182	-78.838315	556+75	8.5R
S-26-31-Bulk	23.56	6	3754518.28	699849.14	33.912142	-78.838327	556+85	8R

^{1.} Plans provided after field exploration and surveying. These values are estimated based on overlay in Google Earth^(R).

GeoScoping Form

PROJECT INFORMATION			
Project ID:	P041157	Date of Trip:	12/19-1/4/2024
County:	Horry	Location:	Loris
Rd/ Route:	S-26-31	Local Name:	Red Bluff Road
Attendees:	K. Fugate		

EXISTING BRIDGE INFORMATION						
Bridge Length:	45 ft	Bridge Width:	25 ft			
Superstructure Type:	Concrete framing and decking	Substructure Type:	Timber Piles			
Begin Bridge Sta ¹ :	556+00	End Bridge Sta ¹ :	556+45			
Begin Bridge Embankment Sta ¹ :	555+00	End Bridge Embankment Sta ¹ :	557+45			
Structure Number:	06038	Posted Weight Limit:	44 tons			
Crossing:	Tod Swamp	Skew:	N/A			
<u>Latitude:</u>	33.912308°	Longitude:	-78.838262° Existing			
Fill Height:	approx 6 ft	Approx Existing Slope Angle:	2H:1V			
1. Begin and End Bridge Embankme	1. Begin and End Bridge Embankment 100 feet down station or up station from bridge, respectively. Sta estimated from overlay of bridge					

	EXISTING ROADWAY EMBA	NKMENT INFORMATION		
Begin Project Sta:	551+00	Begin Bridge Embankment Sta:	551+70	
Accessibility Issues:	None Observed			
Ground Cover:	Asphalt pavement and sand			
Existing Fill Height:	6 feet, sloping	Approx Existing Slope Angle:	2H:1V	
Local Development:	developed - residential			
Topography:	graded slope to swamp			
Traffic Control Necessary:	Yes, lane closure			
Surface Soils:	clays over silts and sands	Muck:	No	
Exposed Rock in Stream Bed:	No	Exposed Rock in banks:	No	
Wetlands on Site:	Yes	Wetland Adjacent:	Yes	
Depth FG to Water:	7 to 11 feet	Water Depth:	2 to 5 feet	
Depth to Existing Ground:	approximately 13 feet at center of bridge			
Scour Condition at EB:	None Observed	Scour Condition at IB:	None Observed	
End Project Sta:	560+40	End Bridge Embankment Sta:	562+00	
Accessibility Issues:	None Observed			
Ground Cover:	Asphalt pavement and grassed sl	houlders		
Existing Fill Height:	6 feet, sloping	Approx Existing Slope Angle:	2H:1V	
Local Development:	developed - residential			
Topography:	graded slope to swamp			
Traffic Control Necessary:	Yes, lane closure			
Surface Soils:	clays over silts and sands	Muck:	No	
Exposed Rock in Stream Bed:	No	Exposed Rock in banks:	No	
Wetlands on Site:	Yes	Wetland Adjacent:	Yes	
Depth FG to Water:	7 to 11 feet	Water Depth:	2 to 5 feet	
Depth to Existing Ground:	approximately 13 feet at center	of bridge		
Scour Condition at EB:	None Observed	Scour Condition at IB:	None Observed	

GDF 00 Rev. 01/2019

GeoScoping Form

UTILITIES INFORMATION				
Attached:	A PVC pipe was observed to be attached to the bridge deck on the west side of the bridge			
Above Ground:	Overhead power was observed on the east side of the road			
ribove Greand.	Overhead power mas abserved on the east state of the read			
Underground:	An underground waterline was observed in the west shoulder			
	Comments:			

GDF 00 Rev. 01/2019

SOIL DESCRIPTION TERMS

Relative Density/Consistency Terms

Relative Densit	<u>y¹</u>		Consistency ²		
	-		_	Unconfined	SPT Blow
Descriptive	Relative	SPT Blow	Descriptive	Compression	Count
Term	Density	Count	Term	Strength (q _u) (tsf)	
Very Loose	0 to 15%	4 and less	Very Soft	0.25 and less	2 and less
Loose	16 to 35%	5 to 10	Soft	0.26 to 0.50	3 to 4
Medium Dense	36 to 65%	11 to 30	Firm	0.51 to 1.00	5 to 8
Dense	66 to 85%	31 to 50	Stiff	1.01 to 2.00	9 to 15
Very Dense	86 to 100%	51 and more	Very Stiff	2.01 to 4.00	16 to 30
•			Hard	4.01 and more	31 and more

Moisture Condition

<u>Descriptive Term</u> <u>Criteria</u>

Dry Absence of moisture, dusty, dry to the touch

Moist Damp but no visible water

Wet Visible free water, usually in coarse-grained soils below the water table

Color

Describe the sample color while sample is still moist.

Angularity¹

Descriptive Term Criteria

Angular Particles have sharp edges and relatively plane sides with unpolished surfaces.

Subangular Particles are similar to angular description but have rounded edges.

Subrounded Particles have nearly plane sides but have well-rounded corners and edges.

Rounded Particles have smoothly curved sides and no edges.

HCI Reaction³

<u>Descriptive Term</u> <u>Criteria</u>

None Reactive No visible reaction

Weakly Reactive Some reaction, with bubbles forming slowly

Strongly Reactive Violent reaction, with bubbles forming immediately

Cementation³

Descriptive Term Criteria

Weakly Cemented Crumbles or breaks with handling or little finger pressure Moderately

Cemented Crumbles or breaks with considerable finger pressure

Strongly Cemented Will not crumble or break with finger pressure

Particle-Size Range¹

Gravel Diameter, mm Sieve Size Diameter, mm Sieve Size Sand #4 to 3/4 inch #200 to #40 4.76 to 19.1 Fine 0.074 to 0.42 Fine Coarse 19.1 to 76.2 34 inch to 3 inch #40 to #10 0.42 to 2.00 Medium 4.00 to 4.76 #10 to #4 Coarse

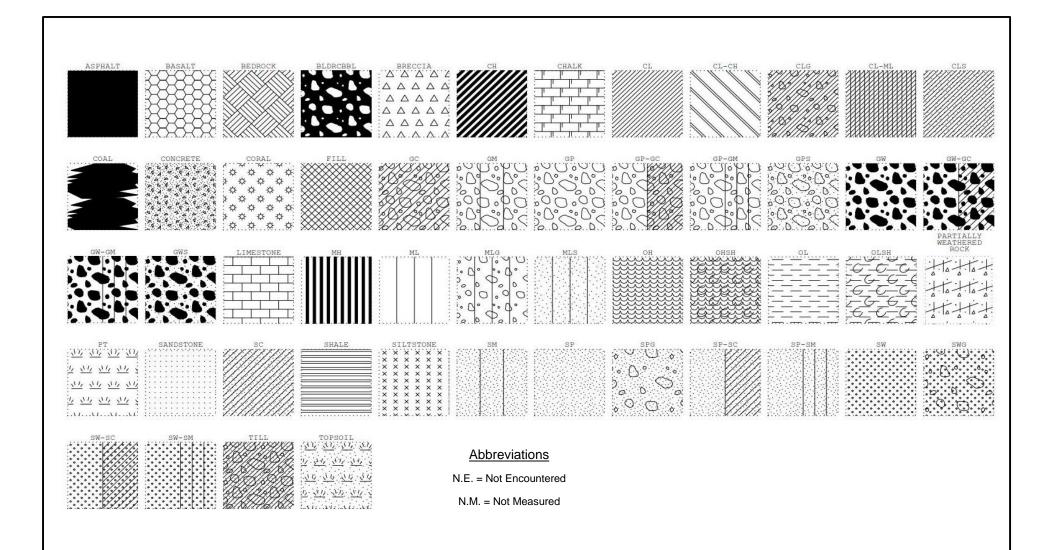
Primary Soil Type^{1, 2}

The primary soil type will be shown in all capital letters.

USCS Soil Designation

Indicate USCS soil designation as defined in ASTM D-2487 and D-2488

AASHTO Soil Designation


Indicate AASHTO soil designation as defined in AASHTO M-145 and ASTM D-3282

¹Applies to coarse-grained soils (major portion retained on No. 200 sieve)

²Applies to fine-grained soils (major portion passing No. 200 sieve)

³Use as required

Facilities | Environmental | Geotechnical | Materials | Exhibit A-6

Project Mana	iger:	Project No.
	KEF	ER23P202
Drawn by:	KFF	Scale:
		N.T.S
01 1 1 1		F11 11

Approved by: WHP Feb 2024

PH. (843) 286-2500

Myrtle Beach, SC 29577

SOIL AND ROCK SYMBOLS

Exhibit A-7

		041157				Co	unty:	Ho	orry					ng No			
ite Des			BRO Tod S											Route		26-31	
		. Fugate		_ocation:				Offs			9.5R		•	nmen		xistin	
	23.6 f			12422	Longit			3.838				Star				8/202	
otal De	•		il Depth:	100 ft		re De		0 1			Date		nplete			1/202	23
				pler Conf				er Re			Y			Liner			(
rill Ma			Drill Meth				Hamm		_		oma		En	ergy I			
ore Siz	ze:	N/A	Driller:	Chris C	ostner		Ground	dwat	er:	TO	В	7 ft		24	HR	11 ft	<u>t</u>
Elevation (ft)	Depth (ft)	MATERIAL	DECODID	TION	Graphic Log	Sample Depth	Sample No./Type				N Value		PL ×	SPT N	MC	LL ×	
Elev	0.0	IVIA I ERIAL Existing Roadway	. DESCRIP	HON	Gra	San	San No./	1st 6"	2nd 6"	ord o 4th 6"	Z	0 10	O R	QD (%) 30 40	■ F	REC (%)
		Asphalt - 13 1/2 in	ches										:				
-	3.3	FILL - Medium der red, reddish yellow gray, subrounded, medium Clayey SA 5YR5/8, 7.5YR7/6	, light brown non reactive, AND (SC) (A-2	and dark fine to 2-6),		1.7 3.7	SS-1	4	4 7	7 7	11		•				
18.6-	-	Medium dense to I light red, subround medium poorly gra (SP-SM) (A-3), 7.5	oose, moist, o led, non react ded SAND wi YR3/2, 2.5YF	dark brown, ive, fine to ith silt		5.7	SS-2	5	6 6	6 6	12	A (D				
-	6.8	NMC=15.2, %200= ALLUVIUM - Loose reddish gray, subretrace to few organi	e to very loos ounded, non r	eactive,		7.7	SS-3	2	3 3	3 2	6	_	>	A (*		
13.6		trace to few organi Clayey SAND (SC NMC=45.5, LL=49 %200=37.6), (A-3) 2.5YF	R4/1		9.7	SS-4	2	3 2	2 2	5	•					
-		¥					SS-5	3	2 2	2 2	4	-					
-	13.5	Medium dense, we				13.5		_			10						
8.6-	-	reactive, subround (SP) (A-3), 2.5YR7		eaium SANE			SS-6	5	8 5	.	13	:0					
-	17.0_	COASTAL PLAIN greenish gray, sub reactive, fine to me	rounded, stro	ngly		18.5											
3.6-	-	(A-2-4), 10G7/1 NMC=22.3, %200=		, ,		. 3.3	SS-7	2	3 1	1	4	•	A D				
-	22.0	Medium dense, we subrounded, strong with silt (SP-SM) (gly reactive, fi			23.5	-										
-1.4	-						SS-8	10	9 1	0	19		•				
						GENI	<u> </u>					:	<u>:</u>	Con	tinua	d Nex	t P
JD - U		SAMPLEF oon oed Sample re, 1-1/8"	R TYPE NQ - Rock Co CU - Cuttings CT - Continu	5	LE	HS CF	SA - Hollo FA - Cont C - Drivi	inuou	s Flig	uger		F			Nash	ı ivex	<i>.</i> Γ

roject		041157	04 000	T - 1 0				ounty:		orry						s-2		
	scription		31 BRO												Route		26-31	
		Fugate			ocation				Offs			9.5R		Align	men		xistir	
	23.6 ft				2422		gitude:			825			Start				8/202	
otal D		100 ft	Soil Dept		100 1		Core D			ft			Com				1/202	
		meter (in):	4.5			nfigura	tion			equi			$\overline{}$			Used:		(
	chine:	D-50-479		Metho		W		Hamm			_			Ene		Ratio:	_	
ore Si	ize:	N/A	Drille	er:	Chris	Costne	er	Groun	dwa	iter:	TC)B	7 ft		24	HR	11 f	<u>t</u>
Elevation (ft)	Depth (ft)	MATER	RIAL DESC	CRIPT	ON	Graphic	Log Sample Depth	Sample No./Type	1st 6"	2nd 6"	sta 6 4th 6"	N Value		PL X— ▲ FI ♣ RC	NES (N VALU MC ONTE	LL X NT (%) REC (%	, b)
_							11:	+	"	0 0	ิ ₹	1	0 10	20 3	0 40	50 60	70 8	0 90
-6.4	28.5	Loose, wet, gre strongly reactiv Clayey SAND (ve, fine to m (SC-SM) (A	edium, -3), 100	Silty,		28.9	5 SS-9	3	3 4	4	7	•	***				
- -	32.0	NMC=26.7, LL: %200=28.4 Loose to mediu gray, subround medium, Silty S	um dense, v led, strongly	vet, ligh	ve, fine	о 📗	33.	-										
-11.4 -	-	(A-2-4) 10G7/1	JAND WITH	irace si			33.	SS-10	3	3	7	10	•					
- - -16.4 -	- - - -						38.9	5 SS-11	5	7	6	13	•					
-21.4	-						43.9	5 SS-12	5	6	5	11	-					
- - -26.4	- - - -	NMC=33					48.	5 SS-13	8	8 1	9	27	-	•	0			
_	_						EGEN						:			<u>:</u>	l Nex	

SS - Split Spoon NQ - Rock Core, 1-7/8" UD - Undisturbed Sample AWG - Rock Core, 1-1/8" CT - Continuous Tube

HSA - Hollow Stem Auger CFA - Continuous Flight Augers DC - Driving Casing

RW - Rotary Wash RC - Rock Core

<u>Project</u>	ID: P	041157				Co	ounty:	Ho	orry				Borin	g No.	: S-2	26-31-	1_
Site De	scription	on: S-26-3	BRO Tod	Swamp				_						coute:		26-31	
ing./Ge	eo.: K	. Fugate	Boring	Location:	555+8	5	(Offse	et:	6	9.5R		Align	ment	: E	xisting	 g
Elev.:	23.6 ft	Latitude		912422	Longi		78	.838	325		Date	Star	ted:		12/1	8/202	3
Total D			oil Depth:	100 ft	Co	ore D	epth:	0 f	t		Date	Con	plete	d:	12/2	1/202	3
Bore Ho	ole Dia	meter (in):	4.5 San	npler Conf	figurati	on	Line	er Re	equi	red:	Y	N) <u>L</u>	iner l	Jsed:	Y	(
Orill Ma			Drill Meth				Hamme						Ene			93.9	
Core Si	ze:	N/A	Driller:	Chris C	costner		Ground	dwat	er:	TOE	3	7 ft		24F	I R	11 ft	
Elevation (ft)	Depth (ft)	MATERIA	L DESCRIF	PTION	Graphic	Sample Depth	(π) Sample No./Type	1st 6"	2nd 6"	3rd 6." 4th 6"	N Value	0 10	PL ★ A FI	NES C	■R	LL X NT (%) EC (%))
-31.4 -	- - - -					53.5	SS-14	6	8 1	2	20	-	•				
-36.4 - -	-					58.5	SS-15	6	6 1	3	19	_	•				_
-41.4 -	67.0					63.5	SS-16	7	6 9	9	15		•				
-46.4 -	67.0	Dense to medium gray, subrounded coarse Silty SANI	, strongly read	ctive, fine to	h	68.5	SS-17	8	11 1	3	24	-	•				
- -51.4 - -	- - - - -					73.5	SS-18	8	14 2	21	35	_		•			
												:	: :	<u>:</u>	<u>: :</u>	<u>: :</u>	_
			D. T. (5.5		LE	GENI	D				DU 1 1	10			inuea	l Next	<u>P</u>
SS - S UD - L AWG - F	Split Spoo Indisturb Rock Cor	ed Sample	R TYPE NQ - Rock C CU - Cutting CT - Continu	S		CF	SA - Hollo FA - Cont C - Drivir	inuou	s Flig	uger		F	ETHOD RW - R RC - R	otary V			

Project Site De		041157	24 DD	O To 4 C	Swomn		00	unty:	110	rry				וטם	Rout	o.: S-	26-31- 26-31	· I
				O Tod S		555+01	=)ffo	4.) 5D		ΛIi				
	23.6 ft	. Fugate Latitu			ocation: 12422				Offse		_	9.5R Date	Sto-		gnme		Existin 8/202	_
Eiev.: Total D		100 ft	Soil D		12422 100 ft	Longit		epth:	.838 0 f		_	Date Date					8/202 21/202	
		meter (in):	4.5		pler Conf					quire		Jale		•		r Used		<u>.၁</u> (1
Drill Ma				rill Meth			/1 I	Hamme								Ratio:		
Core Si		N/A		riller:	Chris C			Ground			ΓΟΕ		7 ft			HR	11 ft	
0010 01	20.	14/7 (1011110	7001101		Oround	avvac	OI.						TI 11 X	1111	
Elevation (ft)	Depth (ft)	MATEF	RIAL DI	ESCRIP	TION	Graphic Log	Sample Depth	Sample No./Type	1st 6"	2nd 6" 3rd 6"	.9"	N Value		P > ▲	L FINES	N VALU MC OONTE	LL X NT (%)	
Ш									1st	3 <u>2</u>	#	_	0 10			50 60		
-	_						78.5	SS-19	6	7 10		17		•				
-56.4 - - -	-							-										
-							83.5	SS-20	6	7 9		16	-	•				
-61.4 = -	- - -							-										
- -	-						88.5	SS-21	6	8 9		17	-	•				
-66.4 -	-							-										
-	_						93.5	SS-22	10	12 8		20	-	•				
-71.4 = - - -							00.5											
-76.4 -	100.0	Davis o T	-4- J - 6 - 6	100 5 1			98.5	SS-23	3	5 8		13	•	•				
-	-	Boring Termin	ated at 1	iuu teet				-										
_	_					LEC	<u>JENI</u>	- D						:				
SS - S UD - L AWG - F	Split Spo Jndisturb	on ed Sample		Rock CoCuttings			HS	SA - Hollo A - Conti	w Ste	m Aug	er	RILLIN	F	RW -		/ Wash Core		

18.5	t Latitude: 100 ft So meter (in): 4 D-50-479 N/A	33.9 il Depth: 1.5 Sam Drill Method Driller: DESCRIP s st, yellowish rek gray, subroucedium Clayey 7.5YR6/8, 7.5Y very loose, moubrounded, no orly graded SA, 7.5YR3/2, 2.8 loose, wet, da non reactive, nedium Clayey dedium Clayey	DOCATION: 012219 100 ft Inpler Confined: RW S. Trues PTION ed, reddish unded, non SAND (SC) YR5/3, oist, dark on reactive, AND with 5YR6/6 ark reddish trace	Longit Co guratio	ude: ore De on	-78 pth: Line Hamme Ground SS-1 SS-2 SS-3	or Reer Tydward	8303 ft equi ype: ter:	3 Interest Support Sup		Star Cor (f tic 13 ff	Antedomple	Ener	iner I rgy F 24h SPT N I NES C D (%)	: S. :: 1/4, 1/4, Usec Ratio	93 13 UE	31 ting 24 4 Y 3.9% 3 ft
23.5 ft Cotal Depth: Bore Hole Dia Drill Machine: Core Size:	MATERIAL Existing Roadway Asphalt - 15 inches FILL - Loose, mois yellow, brown, darl reactive, fine to me (A-2-6), 5YR5/8, 7 5YR4/1 Medium dense to vorown, light red, sufine to medium posit (SP-SM) (A-3), NMC=11.8 ALLUVIUM - Very gray, subrounded, organics, fine to me organics, fine to me organics, fine to me organics, fine to me	33.9 il Depth: 1.5 Sam Drill Method Driller: DESCRIP s st, yellowish rek gray, subroucedium Clayey 7.5YR6/8, 7.5Y very loose, moubrounded, no orly graded SA, 7.5YR3/2, 2.8 loose, wet, da non reactive, nedium Clayey dedium Clayey	ed, reddish unded, non SAND (SC) YR5/3, oist, dark on reactive, AND with 5YR6/6	Longit Co guratio	ude: ore De on 1.5 3.0 4.5	-78 pth: Line Hamme Ground SS-1 SS-2 SS-3	.838 or Re Re Ty dwar	8303 ft equi ype: ter:	3 Interest Support Sup	Date Date Y Date	Star Cor (f tic 13 ff	nplo	eted Li Enei	: ner I rgy F 24h SPT N I UES C	01/4 1/4, Usec Ratio HR	4/20 /202 d: 0: 93 13 LUE	24 4 Y 3.9% 3 ft
Total Depth: Bore Hole Dia Drill Machine: Core Size: Util (#) 0.0 - 1.3 3.0 - 3.0 - 18.5 7.3 12.0 - 8.5	MATERIAL Existing Roadway Asphalt - 15 inches FILL - Loose, mois yellow, brown, darl reactive, fine to medium poor silt (SP-SM) (A-3), NMC=11.8 ALLUVIUM - Very gray, subrounded, organics, fine to me	33.9 il Depth: 1.5 Sam Drill Method Driller: DESCRIP s st, yellowish rek gray, subroucedium Clayey 7.5YR6/8, 7.5Y very loose, moubrounded, no orly graded SA, 7.5YR3/2, 2.8 loose, wet, da non reactive, nedium Clayey dedium Clayey	ed, reddish unded, non SAND (SC) YR5/3, oist, dark on reactive, AND with 5YR6/6	Longit Co guratio	ude: ore De on 1.5 3.0 4.5	Hamme Sample SS-1 SS-2 SS-3 SS-4	or Reer Tydward	ft equi ype:	Auto TOE	Pate Your American Street Park No. 11 7	Cor (fi tic 13 ff	nplo	eted Li Enei	: ner I rgy F 24h SPT N I UES C	01/4 1/4, Usec Ratio HR	/202 d: 93 13	4 Y 3.9% 3 ft L X (%)
Sore Hole Dia Orill Machine: Core Size:	MATERIAL Existing Roadway Asphalt - 15 inches FILL - Loose, mois yellow, brown, darl reactive, fine to me (A-2-6), 5YR5/8, 7 5YR4/1 Medium dense to very brown, light red, sufine to medium posilt (SP-SM) (A-3), NMC=11.8 ALLUVIUM - Very gray, subrounded, organics, fine to me	Drill Methodology Drill Methodology Driller: L DESCRIP s st, yellowish rek gray, subrouedium Clayey 5YR6/8, 7.5Y very loose, moubrounded, no orly graded SA, 7.5YR3/2, 2.8 loose, wet, da non reactive, nedium Clayey	ed, reddish unded, non SAND (SC) YR5/3, oist, dark on reactive, AND with 5YR6/6	guration	9amble Hand Hand Hand Hand Hand Hand Hand Hand	Line Hamme Ground addition ss-1 SS-2 SS-3 SS-4	a salah sala	equi ype: ter:	Auto TOE	Proposition of the state of the	tic 13 ff	t	Li Ener	ner I rgy F 24H SPT N NES C	Vac Ratio HR VAL MC	d: 93 13 UE	Y 3.9% 3 ft 1 .L .X (%)
Sore Hole Dia Orill Machine: Core Size:	MATERIAL Existing Roadway Asphalt - 15 inches FILL - Loose, mois yellow, brown, darl reactive, fine to me (A-2-6), 5YR5/8, 7 5YR4/1 Medium dense to volume to medium poor silt (SP-SM) (A-3), NMC=11.8 ALLUVIUM - Very gray, subrounded, organics, fine to me organics, fine to medium poor silt (SP-SM) (A-3), NMC=11.8	Drill Methodology Drill Methodology Driller: L DESCRIP s st, yellowish rek gray, subrouedium Clayey 5YR6/8, 7.5Y very loose, moubrounded, no orly graded SA, 7.5YR3/2, 2.8 loose, wet, da non reactive, nedium Clayey	ed, reddish unded, non SAND (SC) YR5/3, oist, dark on reactive, AND with 5YR6/6	guration	9amble Hand Hand Hand Hand Hand Hand Hand Hand	Line Hamme Ground addition ss-1 SS-2 SS-3 SS-4	a specific street in the stree	equi ype: ter:	Auto TOE	Proposition of the state of the	tic 13 ff	t	Li Ener	ner I rgy F 24H SPT N NES C	Ratio HR N VAL MC CONTI	93 13 UE • L ENT (3.9% 3 ft
Drill Machine: Core Size:	MATERIAL Existing Roadway Asphalt - 15 inches FILL - Loose, mois yellow, brown, darl reactive, fine to me (A-2-6), 5YR5/8, 7 5YR4/1 Medium dense to v brown, light red, su fine to medium poor silt (SP-SM) (A-3), NMC=11.8 ALLUVIUM - Very gray, subrounded, organics, fine to me	Drill Method Driller: DESCRIP Set, yellowish reck gray, subrouedium Clayey 2.5YR6/8, 7.5Y very loose, moubrounded, no orly graded S/4, 7.5YR3/2, 2.8 loose, wet, da non reactive, nedium Clayey	PTION ed, reddish unded, non SAND (SC) YR5/3, oist, dark on reactive, AND with 5YR6/6 ark reddish trace	sdale	Sample Sample 1.5 3.0 4.5 6.0	Hamme Ground Samble SS-1 SS-2 SS-3	3 3	3 : 5 · · · 4 : :	Auto 70E	9 anles N N 11 7	tic 13 ff	t .	PL PL FIN	SPT N NES CO (%)	Ratio HR N VAL MC CONTI	93 13 UE • L ENT (3.9% 3 ft
Table 1.3- 18.5- 13.5- 12.0 8.5- 12.0	MATERIAL Existing Roadway Asphalt - 15 inches FILL - Loose, mois yellow, brown, darl reactive, fine to me (A-2-6), 5YR5/8, 7 5YR4/1 Medium dense to v brown, light red, su fine to medium poo silt (SP-SM) (A-3), NMC=11.8 ALLUVIUM - Very gray, subrounded, organics, fine to me	Driller: L DESCRIP s st, yellowish re k gray, subrou edium Clayey 5YR6/8, 7.5Y very loose, mo ubrounded, no orly graded S/ , 7.5YR3/2, 2.8 loose, wet, da non reactive, nedium Clayey	ed, reddish unded, non SAND (SC) YR5/3, oist, dark on reactive, AND with 5YR6/6		Samble (#) 1.5 3.0 4.5	Ground addition SS-1 SS-2 SS-3 SS-4	3 3	3 : 5 4 :	3 3 4th 6"	9 anles N N 11 7	13 ff	t d	● S PL X FIN RQI	SPT N INSES CO (%)	VAL MC CONTI	UE • L ENT (3 ft L × (%)
18.5	MATERIAL Existing Roadway Asphalt - 15 inches FILL - Loose, mois yellow, brown, darl reactive, fine to me (A-2-6), 5YR5/8, 7 5YR4/1 Medium dense to v brown, light red, su fine to medium poo silt (SP-SM) (A-3), NMC=11.8 ALLUVIUM - Very gray, subrounded, organics, fine to me	sst, yellowish rek gray, subrouedium Clayey 55YR6/8, 7.5Y very loose, moubrounded, noorly graded SA, 7.5YR3/2, 2.5	ed, reddish unded, non SAND (SC) YR5/3, oist, dark on reactive, AND with 5YR6/6		Samble Debth (#)	SS-1 SS-2 SS-3 SS-4	3 3 7	3 : 5 · · · 4	3d 6 3 3d 6 3	6 11 7			PL X ▲ FIN • RQI	SPT N I IES C D (%)	N VAL MC ONTI	UE UE L	L × (%)
1.3- - 3.0_ - 3.0_ - 7.3- - 7.3- - 12.0_ - 8.5-	Existing Roadway Asphalt - 15 inches FILL - Loose, mois yellow, brown, dark reactive, fine to me (A-2-6), 5YR5/8, 7 5YR4/1 Medium dense to brown, light red, sufine to medium posilt (SP-SM) (A-3), NMC=11.8 ALLUVIUM - Very gray, subrounded, organics, fine to me	st, yellowish rek gray, subrouedium Clayey .5YR6/8, 7.5Y very loose, moubrounded, noorly graded S/ , 7.5YR3/2, 2.9	ed, reddish unded, non SAND (SC) YR5/3, oist, dark on reactive, AND with 5YR6/6 ark reddish trace	Graphic	1.5 3.0 4.5 6.0	SS-1 SS-2 SS-3	3 7	3 5 5 4	3 6 3	6 11 7	0 1	•	PL X ▲ FIN • RQI	IES C D (%)	MC ONTI	ENT (REC	L × [%) (%)
1.3- - 3.0_ - 3.0_ - 7.3- - 7.3- - 12.0_ - 8.5	Asphalt - 15 inches FILL - Loose, mois yellow, brown, darl reactive, fine to me (A-2-6), 5YR5/8, 7 5YR4/1 Medium dense to volume to medium poor silt (SP-SM) (A-3), NMC=11.8 ALLUVIUM - Very gray, subrounded, organics, fine to me	st, yellowish rek gray, subrouedium Clayey 55YR6/8, 7.5Y very loose, moubrounded, noorly graded SA, 7.5YR3/2, 2.5 loose, wet, danon reactive, nedium Clayey	unded, non SAND (SC) YR5/3, oist, dark on reactive, AND with 5YR6/6 ark reddish trace		1.5 3.0 4.5 6.0	SS-1 SS-2 SS-3	3 7	3 5 5 4	3 6 3	6 11 7	0 1	0 2	0 30	40	50 6	0 70	80
3.0 - 3.0 - 7.3	FILL - Loose, mois yellow, brown, darl reactive, fine to me (A-2-6), 5YR5/8, 7 5YR4/1 Medium dense to volume to medium poor silt (SP-SM) (A-3), NMC=11.8 ALLUVIUM - Very gray, subrounded, organics, fine to me	st, yellowish rek gray, subrouedium Clayey 55YR6/8, 7.5Y very loose, moubrounded, noorly graded SA, 7.5YR3/2, 2.5 loose, wet, danon reactive, nedium Clayey	unded, non SAND (SC) YR5/3, oist, dark on reactive, AND with 5YR6/6 ark reddish trace		3.0 4.5 6.0	SS-1 SS-2 SS-3	7	5 4	6 3	11 7	•						
3.0 - 3.0 - 7.3	yellow, brown, darl reactive, fine to me (A-2-6), 5YR5/8, 7 5YR4/1 Medium dense to v brown, light red, su fine to medium poo silt (SP-SM) (A-3), NMC=11.8 ALLUVIUM - Very gray, subrounded, organics, fine to me	k gray, subrouedium Clayey 2.5YR6/8, 7.5Y very loose, moubrounded, noorly graded S/4, 7.5YR3/2, 2.5 loose, wet, danon reactive, nedium Clayey	unded, non SAND (SC) YR5/3, oist, dark on reactive, AND with 5YR6/6 ark reddish trace		3.0 4.5 6.0	SS-1 SS-2 SS-3	7	5 4	6 3	11 7	•	•					
18.5	(A-2-6), 5YR5/8, 7 5YR4/1 Medium dense to value brown, light red, surfine to medium poor silt (SP-SM) (A-3), NMC=11.8 ALLUVIUM - Very gray, subrounded, organics, fine to medium poor silt (SP-SM) (A-3), NMC=11.8	very loose, mount of the control of	vR5/3, oist, dark on reactive, AND with 5YR6/6 ark reddish trace		4.5 6.0	SS-2 SS-3 SS-4	7	4	3	7	-						
7.3 - - - - - - - - - - - - - - - - - - -	brown, light red, su fine to medium poo silt (SP-SM) (A-3), NMC=11.8 ALLUVIUM - Very gray, subrounded, organics, fine to m	ubrounded, no orly graded SA, 7.5YR3/2, 2.9 loose, wet, da non reactive, nedium Clayey	on reactive, AND with 5YR6/6 ark reddish trace		6.0	SS-3 - SS-4					•						
13.5 12.0 8.5	silt (SP-SM) (A-3), NMC=11.8 ALLUVIUM - Very gray, subrounded, organics, fine to m	loose, wet, dannon reactive, nedium Clayey	5YR6/6 ark reddish			- SS-4	3	2	2 2	4	-						
13.5 12.0 8.5	gray, subrounded, organics, fine to m	non reactive, nedium Clayey	trace		8.0		3	2	2 2	4		: :					
12.0			y SAND								_		:				:
12.0					10.0	- SS-5	0	0	1 2	1	•						
8.5-					12.0	- SS-6	0	2	1 1	3	•		:				
	Very loose, wet, da ✓ subrounded, non refine to medium Silt 2.5YR4/1	eactive, trace	organics,		14.0	- SS-7	2	1	3 2	4	*		•			0	
17.0	NMC=70.6, LL=NF %200=26.5	P, PL=NP, PI=	=NP,			- SS-8	0	0	0 2	0	•		:				
_ 17.0_	COASTAL PLAIN				16.0	- SS-9	0	0	3 4	3	•		:				
	greenish gray, sub reactive, fine to me SAND with silt (SP	edium poorly g	graded		18.0	- SS-10	2	2	3 2	5	•		:				
3.5 - 21.0	NMC=26.3, %200=	=10.8			20.0	- SS-11	2	4	6 6	10			0:				- <u>:</u>
	Medium dense to ligray, subrounded, medium Silty SANI	strongly react	tive, fine to		22.0			- -		10	-	•					
	(A-3), 10G7/1				24.0	SS-12	5	5 1	10 11	15		•	:				
-1.5 -					26.0	SS-13	2	4 1	10 8	14		•	:				
				LE(GENE	<u>, </u>						•	•	Con	tinue	ed Ne	ext F
SS - Split Spoo	SAMPLEF	R TYPE NQ - Rock Co	ore. 1-7/8"			A - Hollo	w Ste	em A		RILLII			IOD	otary V			

Site De:		041157 on: S	-26-31	1 BR∩	Tod 9	Swamp			00	unty:	17	orry				اب	oring Ro	ute:		26-31 26-31	
		. Fugate	200			Locatio n	n: 556	3+6	55		Offs	et:		8.5R		Α	lignm			xistin	
Elev.:			titude			912219			tude:			830		Date						/2024	_
Total D		100 ft		oil Dep		100 f			ore De		_	ft					eted:	-		2024	
Bore Ho	ole Dia	meter (in):	· 1	4.5	San	npler Co	nfigu	rati	on	Line	r R	equ	ired:	Y	(1	V)	Lir	ner U	lsed:	Y	(
Drill Ma	chine:	D-50-4	79	Drill	Meth	od: R	W			Hamme	er T	ype	: Aut	oma	tic		Ener	gy R	atio:	93.9	%
Core Si	ze:	N/A		Drill	er:	S. Tru	ıesda	le		Ground	swb	ter:	ТО	В	13 f	t		24H	R	13 ft	
Elevation (ft)	Depth (ft)	MA	ERIA	L DES	CRIF	PTION	i d	Grapnic Log	Sample Depth	Sample No./Type	.9	.91	9	N Value			● S PL × ▲ FINE	ES CO		LL X	
ū								و 	S	ωž	1st 6"	2nd 6"	3rd 6" 4th 6"	z	0 1		20 30			70 8	<u>,</u> 5 E
-	-								28.0	SS-14	8	7	10 11	17		•					
_	-								20.0	SS-15	3	3	3 4	6	•						
-6.5 _	-								30.0	- SS-16	3	3	5 6	8	•						
-	32.0	Very loose brown, sub to coarse \$	rounde	ed, stror	ngly rea	active, fine	ale		32.0	- SS-17	3	5	5 6	10	-						
-11.5-	-	2.5Y8/2 NMC=31.2	, %200)=21.9					34.0	- SS-18	0	0	4 4	4	•						
-	-								36.0	- SS-19	4	5	10 18	15		•					
-	-								38.0	- SS-20	8	8	8 10	16							
-16.5	-								40.0	33-20				10							
-	-								42.0	SS-21	10	9	15 21	24			•				
_	_								44.0	- SS-22	6	10	8 9	18		•					
-21.5-	-								46.0	- SS-23	3	5	7 8	12		•					
-										- SS-24	4	9	11 16	20		(
-	-								48.0	- SS-25	9	9	6 6	15		•					
- 26.5 –	-									-											
							<u> </u>	1010 1 E	GENE)						:	: :	Conf	inuer	l Nex	
SS - S	Split Spo	Son on sed Sample	AMPLE		Rock C	ore, 1-7/8"	,	LC	HS	A - Hollo A - Conti			Auger	RILLI		RW		ary W	/ash	INEX	

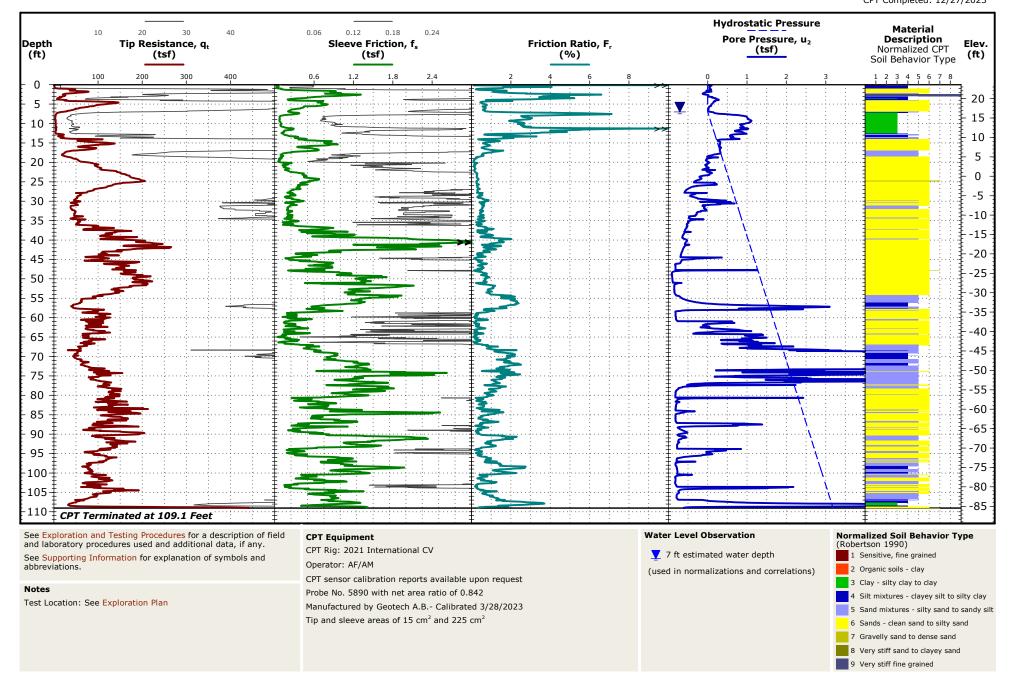
Project									Со	unty:	ŀ	Horry	′			В				-26-3		
Site Des	scriptio	on: S-26	-31	BRO T	Tod S	Swamp)										F	Route	e: S	-26-3	31	
∃ng./Ge	eo.: K.	Fugate		Boi	ring L	ocatio	on:	556+6	5		Off	set:		8.5R		Α	lign	mer	ıt:	Exis	ting	
	23.5 ft		ide:			12219		Longit		-7	8.8	3830	3	Date	Sta					/4/20		
Total De		100 ft	Soi	I Dept	th:	100			ore De) ft		Date	Co	mpl	ete	d:	_	/202		
	•	meter (in):	4.			pler C	onfi				ner I	Requ	iired			<u>.</u> N			Use		Υ	N
Prill Ma		D-50-479		Drill			RW			Hamn					tic		Enc	ergy	Ratio): 93	3.9%	<u> </u>
Core Siz	ze:	N/A		Drille	er:	S. T	rues	dale		Groui					13 f				HR		3 ft	
																		SPT		_UE		
Elevation (ft)	Depth (ft)	MATEF	RIAL	DES	CRIP	TION		Graphic Log	Sample Depth	Sample No./Type	1st 6"	2nd 6"	3rd 6"	4th 6 N Value	0 1	4	RC	D (%)		(%)	90
																:		:	:		:	:
-	-								53.5	SS-2	6 4	4	6	10	-	•						
-31.5	-																					
-										-												
-	1	NMC=36.5, LL %200=32.0	.=NP	, PL=N	P, PI=	∍NP,			58.5	SS-2	7 3	4	7	11	_ *	•		A O				
-36.5																:						
=										-												
- -	-								63.5	SS-2	ΩΛ	4	6	10	-							
-41.5-										33-2	4			10	+ '	<u>:</u> :					:	:
-	=									-												
-									68.5		_				-						:	
-46.5-										SS-2	9 3	3	3	6		:						:
-	-									-												
-									73.5										:			
-51.5-										SS-3	0 3	4	4	8		<u> </u>						:
-	-									-												
								LE	GENI	 D						:	: :	Coi	ntinu	ed Ne	ext F	Pag
UD - U	Split Spoo Indisturb	on ed Sample		CU - C	uttings	ore, 1-7/ s ous Tub			HS CF	SA - Hol FA - Cor C - Driv	ntinu	ous Fl	Auger ight A		NG N	RW	' - R		Wash			

		041157	24 DE	20 Ta-	1 0			Lo	unty:	_ F	lorry	'				Route).: S-2		
Site De			-31 BF	RO Tod			556+6	5	1	Off,	oot:		0 ED					26-31	
	23.5 ft	. Fugate Latitu	ıde.		3 Loc 3.9122		556+6 Longit				set: 8830	2	8.5R Date			nmen		xistin /2024	_
⊏iev.: Total D		100 ft		ು Depth:		100 ft			epth:		ft	3	Date			-d:		72024 2024	-
		meter (in):	4.5				figuration					iired:					Used:		<u>(</u> 1
Orill Ma				orill Met				JII	Hamm								Ratio:		
Core Si		N/A		riller:		3. True			Ground					13 ft			HR	13 ft	
<u> </u>		14/71		71		, mac	- Guaio		<u> </u>			1.0		10 11				1 .0	_
Elevation (ft)	Depth (ft)	MATEF	RIAL D)ESCRI	IPTIC	DN	Graphic Log	Sample Depth	Sample No./Type	1st 6"	.g 6"	3rd 6" 4th 6"	N Value		PI × ▲ I	FINES (N VALU MC ⊖ CONTE) ■ F	LL X NT (%) REC (%)
Ш							2.12.14.2			18	2	<u></u> 원	-	0 10	20	30 40	50 60	70 8	0 9
-56.5	_							78.5	SS-31	5	5	11	16		•				
-50.5	- - - -							83.5	- - -										
-61.5 -	_							83.0	SS-32	5	8	11	19		•				
-	-								_										
-66.5	_							88.5	SS-33	5	5	7	12)				
- - -	- - -							93.5	- - -										
-71.5-	-							00.0	SS-34	1	1	1	2	•					
- - -	- - -							98.5	_ _ _ _										
-76.5	100.0			100.5				00.0	SS-35	4	4	7	11	•	1				
-	- - -	Boring Termin	ated at	100 teet	[_										
_	_						I F	GENI	<u> </u>						:				
			PLER T										DRILLII						
UD - L	Split Spo Jndisturb Rock Cor	on ed Sample e, 1-1/8"	CL	Q - Rock J - Cuttin Γ - Contir	igs			CF	SA - Hollo FA - Cont C - Drivi	inuo	us Fl	ight A	ugers			Rotary Rock C			

Project	ID :	041157					Co	unty:	Horry			B	oring No.	: S-2	6-31-B	ι
Site Des	scripti	on: S-26-3	1 BRO To	od Swa	mp								Route:		6-31	
		. Fugate		ng Loca		556+8	5		Offset:		8R	1	Alignment		xisting	
	23.6 f			33.9121		Longit			3.838327	7		Starte		1/4/2		_
otal D			oil Depth		ft		re De		0 ft			Comp		1/4/2		
	•			Sample					er Requi	red:			Liner			(
Orill Ma				ethod:	HSA				er Type:				Energy R			_
ore Si		N/A	Driller		True				dwater:	то	В	Not Er	count 24			_
		-														_
Elevation (ft)	Depth (ft)	MATERI/	AL DESC	RIPTIO	N	Graphic Log	Sample Depth	Sample No./Type			N Value		SPT N PL N X FINES C RQD (%)	IC ONTEN	LL × IT (%)	
ı≝	0.0	Existing Roadwa	V			G	S	N S	1st 6" 2nd 6"	ard 4 4	Z		20 30 40 5			ç
		Asphalt - 15 inch													1 1	_
4	1.3					. , , , , , ,	1.5	-						: :	: :	
_	3.0	FILL - Moist, yel brown, dark gra tive, fine to medii (A-2-6), 5YR5/8, 5YR4/1	y, subrour um Clayey 7.5YR6/8,	ided, noi SAND (S 7.5YR5/3	reac- (C)		1.3	Bulk				0×	*			
18.6]	NMC=11.0, LL=2 %200=27.1			dod			_								
_	6.0_	Moist, dark brown non reactive, fine SAND with silt (S 2.5YR6/6	to mediun	n poorly o	raded											
-	-	Auger Terminate	d at 6 feet.					-								
13.6-																_
13.0	-							_								
_	-							-								
-	-							-								
8.6-	-															_
_	-							_								
-	-															
3.6-	-							_								
-	-															
_								-								
-1.4	-															_
							05::-					<u> </u>	<u> </u>	<u>: :</u>	<u> </u>	_
		CAMPI	-D TV:			LE	GENI)			יייום ר		HOD			_
UD - L	Split Spo		ER TYPE NQ - Roo CU - Cut CT - Cor	tings			CF	A - Cont	ow Stem A inuous Fliq ng Casing	uger			HOD / - Rotary V Rock Co			

S-26-31 (Red Bluff Road) BRO Tod Swamp SCOT Project ID: P041157 | Horry County, South Carolina Terracon Project No. ER23P202

Elevation: 23.58 (ft)


CPT Sounding ID S-26-31-1C

1246 Howard Ave Myrtle Beach, SC

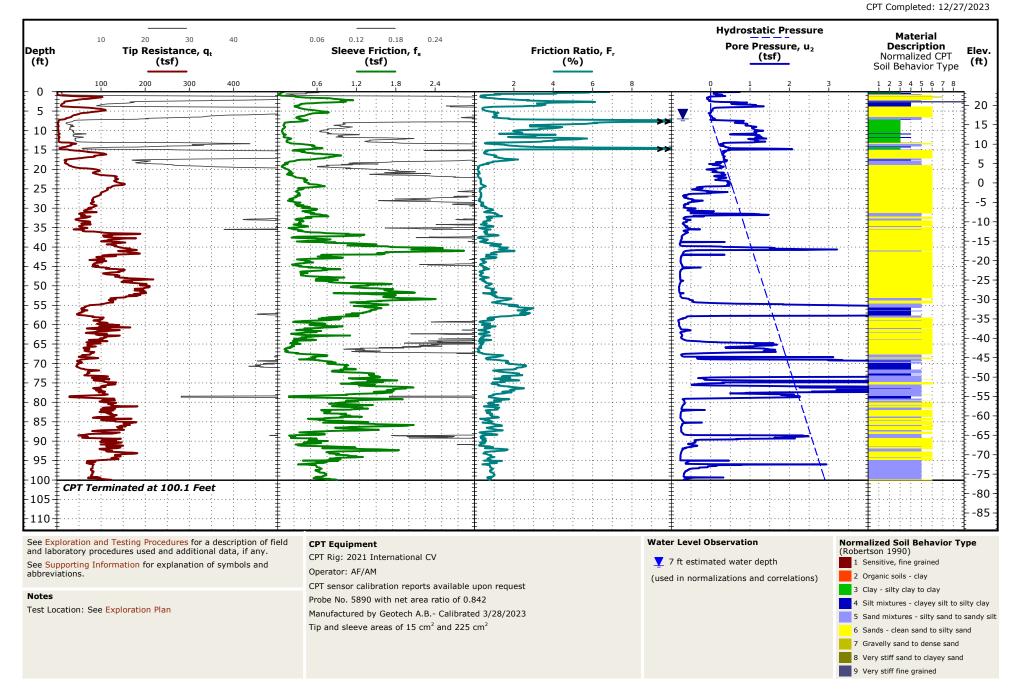
CPT Started: 12/27/2023 CPT Completed: 12/27/2023

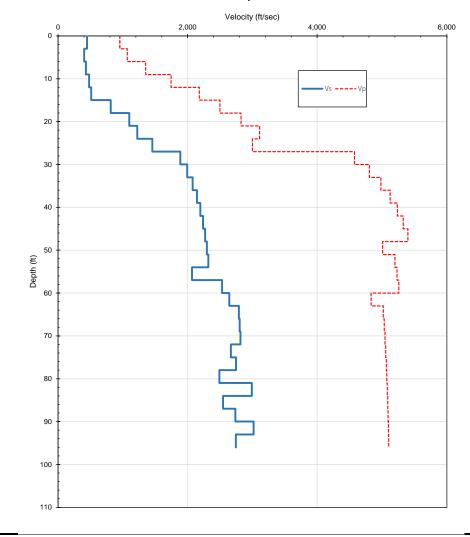
Latitude: 33.912448° Longitude: -78.838238° Sta: 555+65 Offset: 9' R

S-26-31 (Red Bluff Road) BRO Tod Swamp SCOT Project ID: P041157 | Horry County, South Carolina

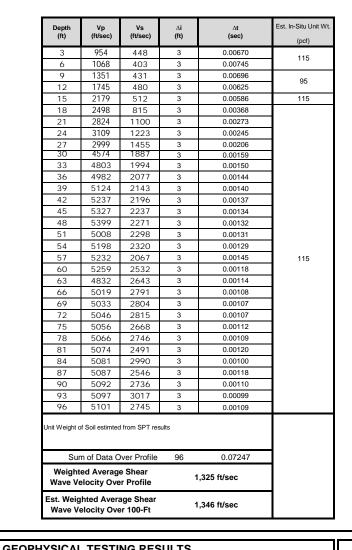
Terracon Project No. ER23P202

Elevation: 23.50 (ft)


CPT Sounding ID S-26-31-2C


Fierracon

1246 Howard Ave Myrtle Beach, SC


CPT Started: 12/27/2023

Latitude: 33.912182° Longitude: -78.838315° Sta: 556+75 Offset: 8.5'R

Downhole Seismic Velocity Fixed Interval Method

KF	Project No.	
		ER23P202
RK		ENZ3FZUZ
	Scale:	NA
	Date:	
		- / /
	<u> </u>	3/28/2024
		RK Scale:

Consulting Engineers and Scientists

1246 Howard Ave Myrtle Beach, South Carolina
Ph: (843) 286-2500 Fax. (864) 292-6361

GEOPHYSICAL TESTING RESULTS	
DOWNHOLE SEISMIC TEST	
S-26-31 (Red Bluff Road) Bridge Replacement over Tod Swamp	
HORRY COUNTY, SOUTH CAROLINA	
P041157	

TEST NO. S-26-31-1

EXHIBIT A-9

Project I Project I		:	S-26-31 P041157	BRO Tod	l Swamp			Test Hole No	o.: S-26-31-1
Consulta		m:		n Consulta	ants. Inc.			Station:	555+85
Grouted			Fugate			Date	1/5/24	Offset:	9.5 R
Notes:					nd cement mix, 6 pounds water	1			
			pound b	entonite, t	o pourius water				
					Grout (Curve			
	0								
	20								
	20								
	40								
	40								
Donth									
Depth (ft)	60								
	80								
	100								
	120		2	4	(6	8	10	12
		ı	J.	ı	Grout Volume	Placed (ft ³)	I	I	ı
N	umber	of Bags On-Site			15	ea.			
		f Test Hole Grou			100	ft.			
D	iamete	er of Test Hole			0.375	ft.			
		Test Hole			0.11	ft²			
		of Test Hole of Casing (If app	olicable)		<u>9.0</u> 1.16	ft³ ft³			
		cal Volume of T			9.84	ft ³			
		of Bags Used			17	ea.			
\/	olume	Placed			7.9	ft3			

Project Name: Project ID: Consultant Firm: Grouted By: Notes:		: <u>P</u> : <u>T</u> <u>F</u> M	-26-31 BRO Tod 041157 erracon Consulta ugate lix design: 1 poul ounds water		Date <u>1/5/20</u>	Station:	No.: S-26-31-2 556+65 8.5R		
	Grout Curve								
Depth (ft)	0								
	4								
	8								
	12								
	16								
	20								
	36	1	2	3 Grout Volume P	4 laced (ft³)	5	6		
De Di Ar Ve Tr	epth of To ameter of rea of Test olume of olume of neoretica	Bags On-Site est Hole Grouted of Test Hole st Hole Test Hole Casing (If application of Test Bags Used	able)	15 35 0.375 0.11 3.9 - 3.9 6.5	ea. ft. ft. ft² ft³ ft³ ft³ ea.				

Project Name: Project ID: <u>P041157</u> Consultant Firm: Grouted By: Notes:		S-26-31 BRO Too Terracon Consulta Fugate Mix design: 1 pou pounds water	ants, Inc.	-	S-26-31- Test Hole No.: Bulk Station: 556+85 Offset: 8R_				
				Grout C	urve				
Depth (ft)	2								
	4								
	6								
	8								
	10								
	12		1 2	3 Grout Volume		4	5		6
Do Di Ar Vo Vo Tr No	epth of iameteres of Tolume of the oreginal of the oreginal of the oresting the ore	of Bags On-Site Test Hole Grout r of Test Hole Test Hole of Test Hole of Casing (If app cal Volume of Te of Bags Used	licable)	15 6 0.5 0.20 1.0 - 1.0 2 1.0	ea. ft. ft. ft² ft³ ft³ ft³ ea. ft³				

Appendix B Laboratory Testing

Exhibit B-1 – Laboratory Testing Description Summary of Laboratory Data Laboratory Data Sheets (11 Pages)

Laboratory Testing Description

The samples collected during the field exploration were taken to our laboratory for additional testing. The laboratory testing scope was developed by the SCDOT and laboratory assignment was performed by Terracon. The laboratory tests were conducted on selected soil samples from the borings and the bulk sample locations. The test results are presented in this appendix.

The laboratory test results were used to confirm the soil descriptions presented on the boring logs in Appendix A. Laboratory tests were performed in general accordance with the applicable ASTM, AASHTO, SCDOT or other accepted standards.

Selected soil samples obtained from the site were tested for the following engineering properties:

- Moisture Content
- Atterberg Limits
- Wash 200
- Triaxial Shear CU w/ PP
- Grain Size Distribution
- Hydrometer
- Corrosion Series

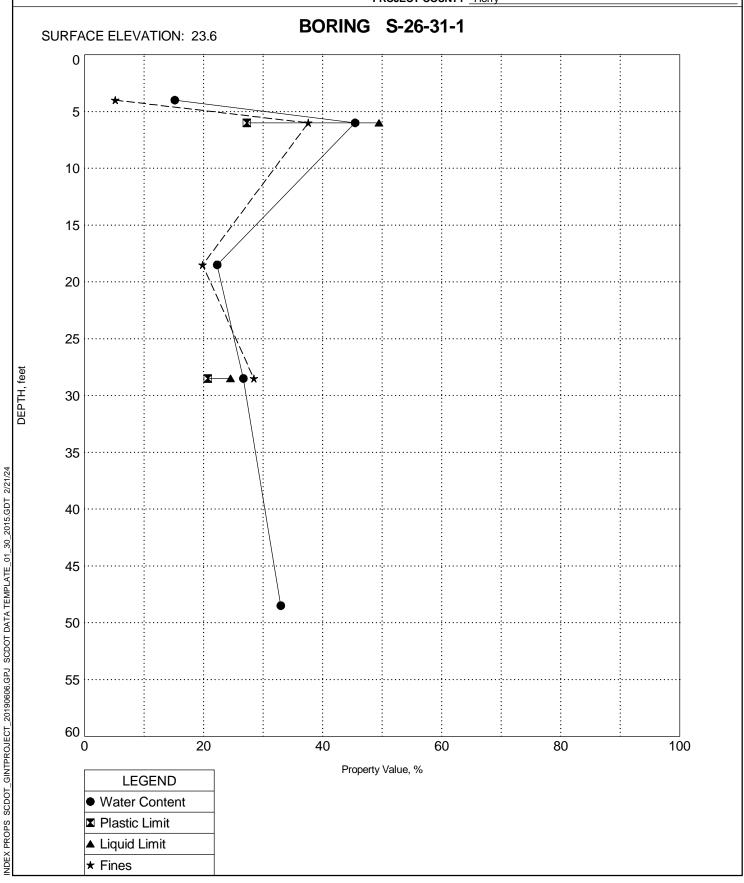
AASHTO T265/(ASTM D2216)
AASHTO T89/T90(ASTM D4318)
AASHTO T11/(ASTM D1140)
AASHTO T297/(ASTM D4767)
ASTM D6913

ASTM D422 AASHTO T288

AASHTO T289/ASTM G51 AASHTO T290/ASTM C1580 AASHTO T291

Summary of Laboratory Results

Boring ID	Depth (Ft.)	Soil Classification USCS & AASHTO	Liquid Limit	Plastic Limit	Plasticity Index	% Fines	% Gravel	% Sand	% Silt	% Clay	Water Content (%)
S-26-31-1	3.7					5.1	0.1	94.8			15.2
S-26-31-1	5.7	CLAYEY SAND(SC) / A-7-6 (3)	49	27	22	37.6	5.1	57.4	34.8	2.7	45.5
S-26-31-1	18.5-20					19.8	5.4	74.8			22.3
S-26-31-1	28.5-30	SILTY, CLAYEY SAND(SC-SM) / A-2-4 (0)	25	21	4	28.4	0.8	70.8	27.6	0.8	26.7
S-26-31-1	48.5-50										33.0
S-26-31-2	3-4.5										11.8
S-26-31-2	12-14	SILTY SAND(SM) / A-2-4 (0)	NP	NP	NP	26.5	1.2	72.1	25.3	1.2	70.6
S-26-31-2	20-22					10.8	0.7	88.6			26.3
S-26-31-2	34-36					21.9	8.2	69.9			31.2
S-26-31-2	58.5-60	SILTY SAND(SM) / A-2-4 (0)	NP	NP	NP	32.0	2.8	64.2	30.8	1.2	36.5
S-26-31-Bulk	1.5	CLAYEY SAND(SC) / A-2-6 (0)	27	16	11	27.1	1.2	71.7			11.0

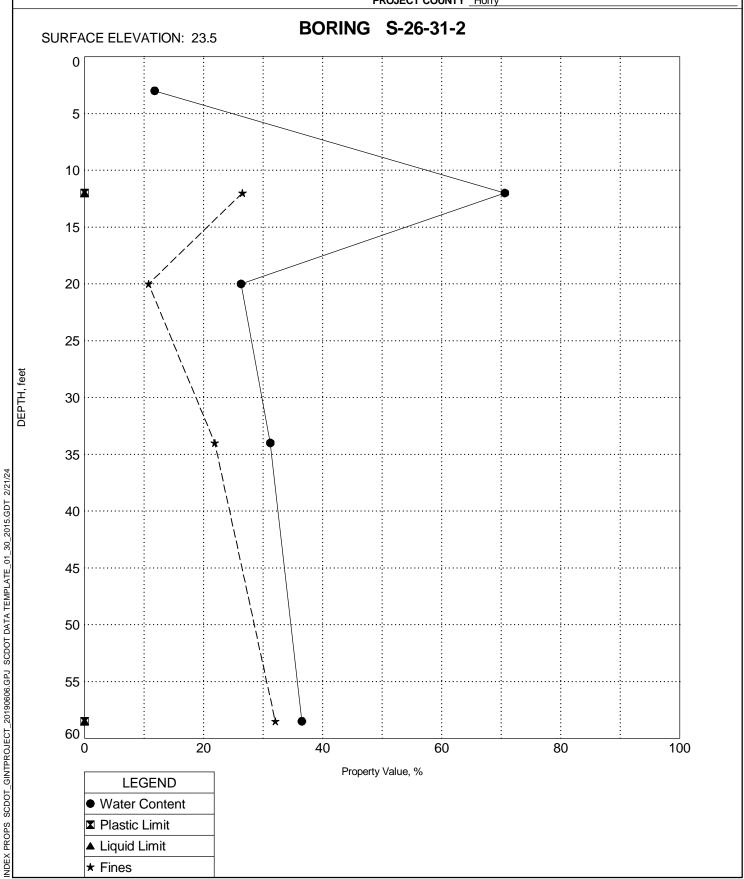


INDEX PROPERTIES VERSUS DEPTH

PROJECT ID P041157

PROJECT NAME S-26-31 Red Bluff Road

PROJECT COUNTY Horry

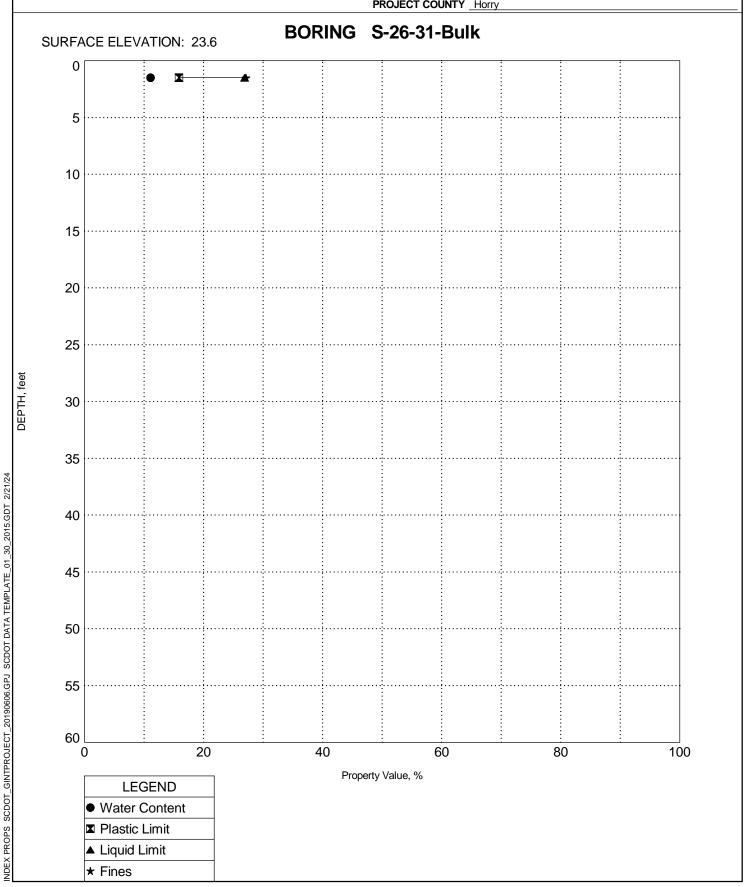


INDEX PROPERTIES VERSUS DEPTH

PROJECT ID P041157

PROJECT NAME S-26-31 Red Bluff Road

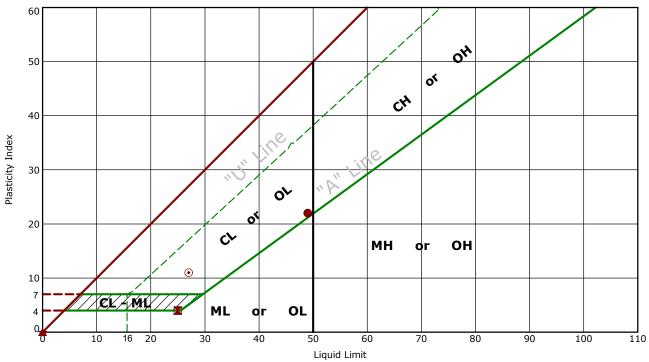
PROJECT COUNTY Horry



INDEX PROPERTIES VERSUS DEPTH

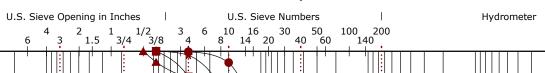
PROJECT ID P041157

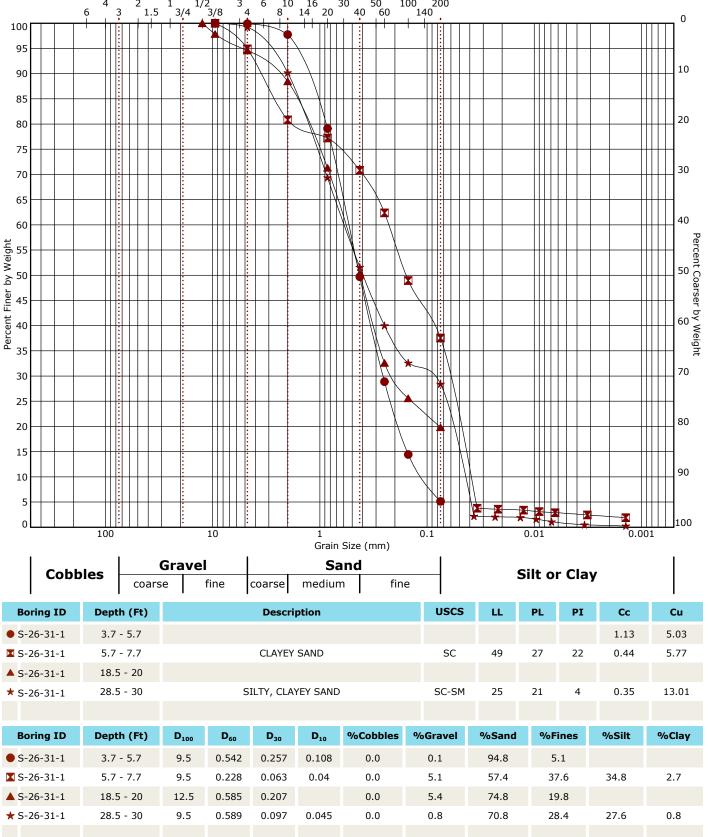
PROJECT NAME S-26-31 Red Bluff Road


PROJECT COUNTY Horry

Atterberg Limit Results

ASTM D4318

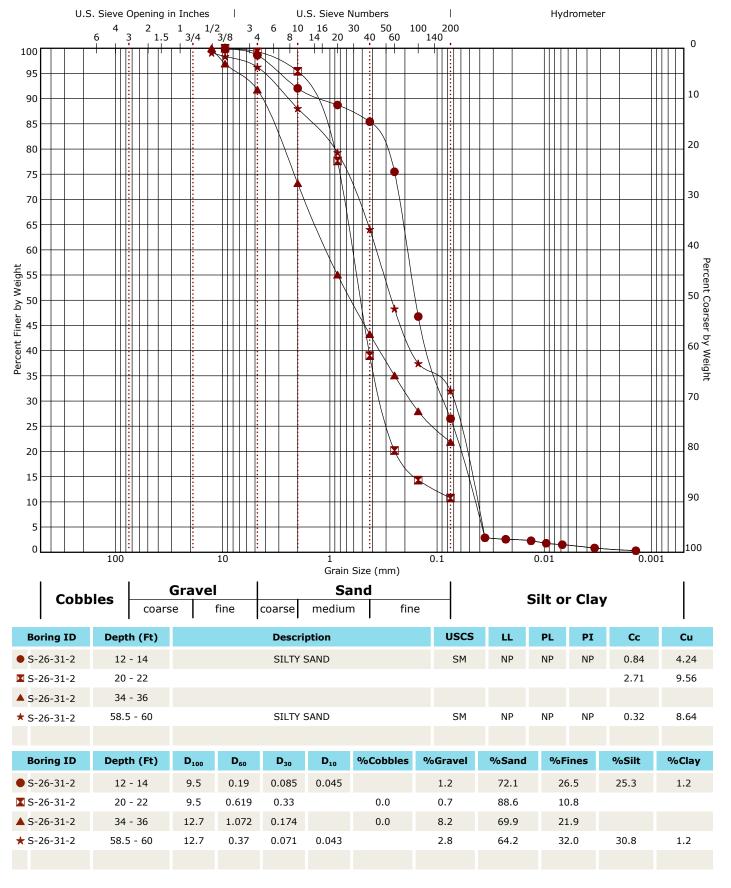

	Boring ID	Depth (Ft)	LL	PL	PI	Fines	AASHTO	Description
•	S-26-31-1	5.7 - 7.7	49	27	22	37.6	A-7-6 (3)	CLAYEY SAND
×	S-26-31-1	28.5 - 30	25	21	4	28.4	A-2-4 (0)	SILTY, CLAYEY SAND
•	S-26-31-2	12 - 14	NP	NP	NP	26.5	A-2-4 (0)	SILTY SAND
*	S-26-31-2	58.5 - 60	NP	NP	NP	32.0	A-2-4 (0)	SILTY SAND
•	S-26-31-Bulk	1.5	27	16	11	27.1	A-2-6 (0)	CLAYEY SAND


Terracon Project No. ER23P202

Grain Size Distribution

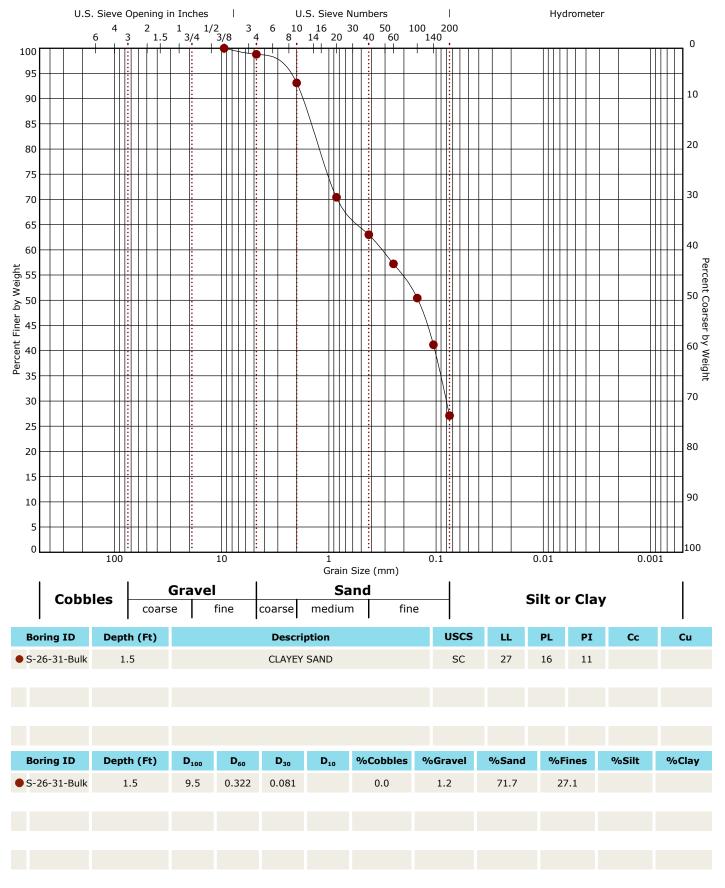
521 Clemson Rd Columbia, SC

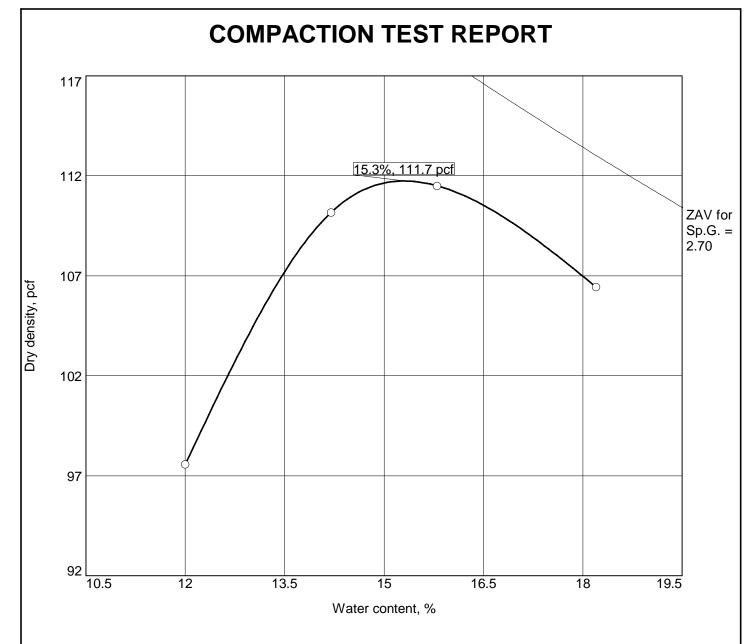
ASTM D422 / ASTM C136



Grain Size Distribution

ASTM D422 / ASTM C136

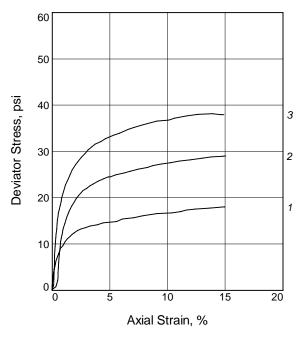



Terracon Project No. ER23P202

Grain Size Distribution

ASTM D422 / ASTM C136




Test specification: ASTM D 698-12 Method B Standard

Elev/	Classit	Nat.	Sp.G.		PI	%>	%<	
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	3/8 in.	No.200
1.5-6 ft	SC	A-2-6(0)	11.1	2.7	27	16	0.0	27.1

TEST RESULTS	MATERIAL DESCRIPTION
Maximum dry density = 111.7 pcf	SC Clayey Sand
Optimum moisture = 15.3 %	
Project No. ER23P202T Client: HNTB North Carolina PC	Remarks:
Project: SCDOT Bridge Package 18 S-26-31 (Red Bluff Road) BRO Tod Swamp	
○ Source of Sample: Bulk Sample Number: 1	
Terracon Consultants, Inc.	

Total Normal Stress, psi ——— Effective Normal Stress, psi ———

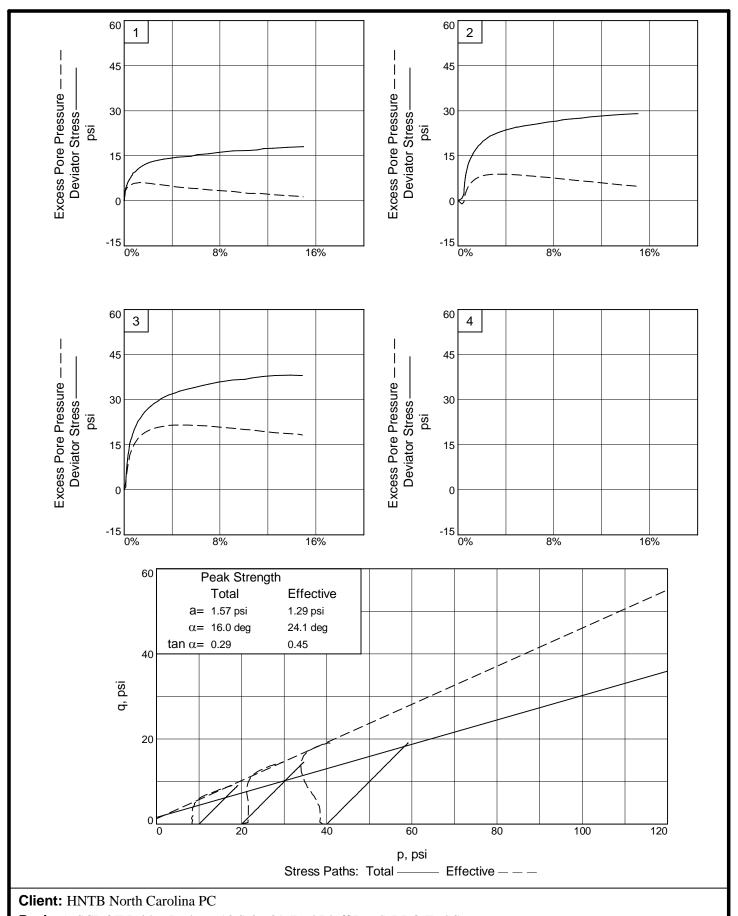
Type of Test:

CU with Pore Pressures
Sample Type: Remolded
Description: clayey sand

LL= 27 PL= 11 PI= 16

Assumed Specific Gravity= 2.7 Remarks: Three Specimen Series

	Saı	mple No.	1	2	3	
		Water Content, %	17.3	17.3	17.3	
		Dry Density, pcf	106.1	106.1	106.1	
	Initial	Saturation, %	79.4	79.4	79.4	
	<u></u>	Void Ratio	0.5879	0.5879	0.5879	
		Diameter, in.	2.80	2.80	2.80	
3		Height, in.	5.60	5.60	5.60	
		Water Content, %	21.2	20.8	20.2	
2	χţ	Dry Density, pcf	106.7	107.7	108.4	
	At Test	Saturation, %	98.8	99.5	98.4	
	<u>'</u>	Void Ratio	0.5795		0.5544	
,	_	Diameter, in.	2.80	2.78	2.78	
		Height, in.	5.59	5.58	5.57	
	Str	ain rate, in./min.	0.001	0.001	0.001	
	Ba	ck Pressure, psi	50.0	50.0	50.0	
	Ce	Il Pressure, psi	60.0	70.0	90.0	
	Fai	I. Stress, psi	11.1	22.6	35.7	
	E	xcess Pore Pr., psi	6.1	8.9	20.9	
	Ult.	Stress, psi				
	E	xcess Pore Pr., psi				
	$\overline{\sigma}_1$	Failure, psi	15.0	33.7	54.9	
	$\overline{\sigma}_3$	Failure, psi	3.9	11.1	19.1	


Client: HNTB North Carolina PC

Project: SCDOT Bridge Package 18
S-26-31 (Red Bluff Road) BRO Tod Swamp
Source of Sample: Bulk Depth: 1.5 ft

Sample Number: 1

Proj. No.: ER23P202T Date Sampled: N/A

TRIAXIAL SHEAR TEST REPORT Terracon Consultants, Inc.

Project: SCDOT Bridge Package 18 S-26-31 (Red Bluff Road) BRO Tod Swamp Sample Number: 1

Source of Sample: Bulk Depth: 1.5 ft

Terracon Consultants, Inc. Project No.: ER23P202T

750 Pilot Road, Suite F Las Vegas, Nevada 89119 (702) 597-9393

Client

HNTB North Carolina PC

Project

SCDOT Bridge Package 18 S-26-31 (Red Bluff Road) BRO Tod Swamp

Sample Submitted By: Terracon (ER) Date Received: 1/16/2024 Lab No.: 24-0023

Results of Corrosion Analysis

Sample Number	
Sample Location	S-26-31-1
Sample Depth (ft.)	0.0-10.0
pH Analysis, ASTM G51	7.40
Water Soluble Sulfate (SO4), ASTM C 1580 (mg/kg)	157
Sulfides, AWWA 4500-S D, (mg/Kg)	Nil
Chlorides, ASTM D512, (mg/kg)	380
Red-Ox, ASTM G200, (mV)	+720
Total Salts, AWWA 2520 B, (mg/Kg)	1405
Saturated Minimum Resistivity, ASTM G-57, (ohm-cm)	1649

Analyzed By

Nathan Campo Laboratory Coordinator

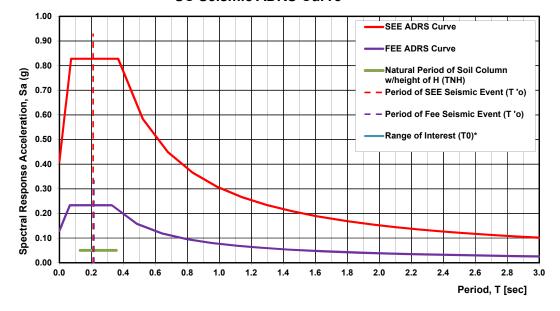
M. Cargo

The tests were performed in general accordance with applicable ASTM and AWWA test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

Appendix C Supporting Documents

3-Point Acceleration Design Response Spectrum by SCDOT Rig Calibration Report

3-Point Acceleration Design Response Spectrum


SCDOT v3.2 - 06/01/2023

Project ID:	P041157			Latitude: 33.9122	
Route:	S-26-31	County:	26 - Horry	Longitude: 78.8382	
Project:		Red Blu	ff Road over Tod S	wamp	

Design EQ	PGA	S _{DS}	S _{D1}	M _w	R	PGV	D _{a5-95}	T'o
	g	g	g	-	km	inches/sec	sec	sec
FEE	0.13	0.23	0.08	7.30	120.33	2.91	37.84	0.22
SEE	0.41	0.83	0.30	7.30	98.70	11.55	34.60	0.21

Fundamental Period of	Range of Interest		V*	ы	T _{NH}	
Structure, T ₀ *	sec		▼ s,H	П	S	ec
sec	0.5*T ₀	2.0*T ₀	ft/sec	ft	(4*H)/V* _{s,H}	(6*H)/V* _{s,H}
0.00	0.00	0.00	1011.09	60.00	0.13	0.36
0.00	0.00	0.00	H = B-C Boundary			

SC Seismic ADRS Curve

Designer:	N. Harman - Support
Date:	4/18/2024

Damping:	5%		
	Goolog	ic Condition:	Geologically Realistic (Q = 100)*
	Geolog	ic Condition.	SCCP
ADRS Locat	ion within	Soil Column:	At Ground Surface

South Carolina Coastal Plain

*Same Geologic Condition as used in SCENARIO_PC (2006)

	FEE	Data		SEE	Data
i	1				_
	Т	Sa		Т	Sa
	0.00	0.129	ĺ	0.00	0.411
	0.01	0.147	ĺ	0.01	0.480
	0.02	0.164	ĺ	0.02	0.550
	0.03	0.181		0.04	0.619
	0.04	0.199		0.05	0.689
	0.05	0.216		0.06	0.758
To	0.07	0.233	To	0.07	0.828
	0.09	0.233		0.10	0.828
	0.11	0.233		0.12	0.828
	0.13	0.233	ĺ	0.15	0.828
	0.15	0.233	[0.17	0.828
	0.17	0.233		0.20	0.828
	0.20	0.233		0.22	0.828
	0.22	0.233		0.24	0.828
	0.24	0.233		0.27	0.828
	0.26	0.233		0.29	0.828
	0.28	0.233		0.32	0.828
	0.31	0.233		0.34	0.828
Ts	0.33	0.233	Ts	0.37	0.828
	0.49	0.158		0.52	0.582
	0.64	0.119		0.68	0.449
	0.80	0.096		0.83	0.366
	0.96	0.080		0.99	0.308
	1.11	0.069	l .	1.14	0.266
	1.27	0.060	l .	1.30	0.235
	1.43	0.054		1.45	0.210
	1.59	0.048		1.61	0.189
	1.74	0.044		1.76	0.173
	1.90	0.040		1.92	0.159
	2.06	0.037		2.07	0.147
	2.21	0.035		2.23	0.137
	2.37	0.032		2.38	0.128
	2.53	0.030		2.54	0.120
	2.69	0.028		2.69	0.113
	2.84 3.00	0.027 0.026		2.85 3.00	0.107 0.101
	3.00	0.026	ı L	3.00	0.101

SPT Automatic Hammer Energy Measurement Report

Drill Rig Model: Diedrich D-50

Drill Rig Serial Number: D50-479

Asset Number: DR#1109

July 3, 2023

Prepared for:

Terracon Consultants, Inc. Columbia, South Carolina

Terracon.com

July 03, 2023

Terracon Consultants Inc. 521 Clemson Rd. Columbia, SC 29229

Attn: Chris Costner

E: chris.costner@terracon.com

Re: SPT Automatic Hammer Energy Measurement Report

Rig Serial Number: D50-479 Terracon Project Number: DUXX0500

Dear Mr. Costner:

This report provides the Energy Transfer Ratio (ETR) for the Standard Penetration Testing (SPT) automatic hammer as summarized below:

Table 1: Hammer Efficiency Summary

Drill Rig Make/Model	Drill Rig Serial Number	Drill Rig Year	Asset Number	Energy Transfer Ratio (ETR)	Hammer Efficiency Correction (C _E)
Diedrich D50	D50-479	2021	DR#1109	93.9% ± 2.3%	1.57

If you have any questions concerning this summary, or if we may be of further service, please contact us.

JinDuit

Rob Kramer

James P. Smith National Manager of Equipment & Training Rob Kramer Geophysical Services Manager, COG

Attachments:

Exhibit A: PDA SPT Analyzer Results Exhibit B: PDA Equipment Calibration

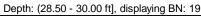
MEASUREMENT SUMMARY

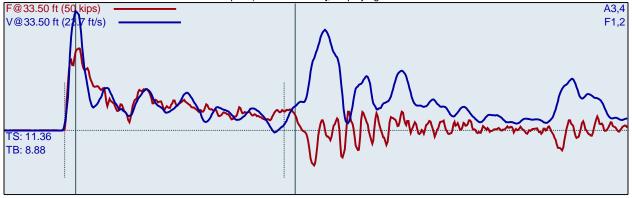
ITEM	DESCRIPTION
Drill Rig Owner	Terracon Consultant, Inc. – Columbia, SC
Drill Rig Operator	Shiver Truesdale; Terracon Exploration
Testing Date	07/03/2023
Testing Location	Columbia, SC
Boring Identification	B-1
Hammer Type	140 pounds (automatic)
Boring Method	Rotary Wash
Drill Rods	 AWJ 1-¾" outside diameter 3/16" wall thickness
Calibration Testing Equipment	 2-foot AWJ rod instrumented w/ two strain gauges and two accelerometers ■ Model SPT Analyzer™ (PDA)
ASTM Methods Used	ASTM D1586 , Standard Test Method for Standard Penetration Test and Split-Barrel Sampling of Soils
	ASTM D4633-16 , Standard Method for Energy Measurement for Dynamic Penetrometers
SPT Calibration Personnel	Micah Hatch– Department Manager, Terracon Consultants, Inc.

Exhibit A PDA SPT Analyzer Results

GRL Engineers, Inc. SPT Analyzer Results

Page 1 of 7


PDA-S Ver. 2022.35.2 - Printed: 7/5/2023


Diedrich D50 (SN 479)

28.5-30 M. Hatch Interval start: 7/3/2023

B-13 (PN 73235076)

SP: 0.492 k/ft3 AR: 1.18 in^2 LE: 33.50 ft EM: 30000 ksi WS: 16807.9 ft/s

F1: [512AWJ] 207.75 PDICAL (1) FF1 A3 (PR): [K5998] 403.535 mv/6.4v/5000g (1) VF1 F2: [512AWJ2] 208.76 PDICAL (1) FF1 A4 (PR): [K10493] 411.89 mv/6.4v/5000g (1) VF1

FMX: Maximum Force VMX: Maximum Velocity

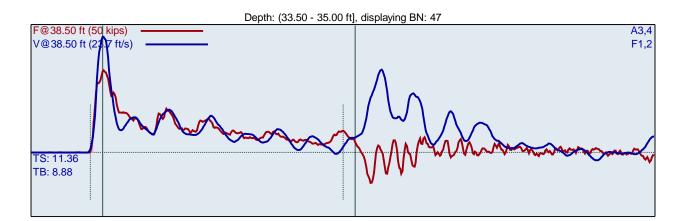
BPM: Blows/Minute

EFV: Maximum Energy

ETR: Energy Transfer Ratio - Rated

BL#	ВС	FMX	VMX	BPM	EFV	ETR
	/6"	kips	ft/s	bpm	ft-lb	%
3	6	32	23.8	48.1	315	89.9
4	6	34	23.8	47.8	319	91.3
5	6	32	23.5	48.4	316	90.4
6	6	32	23.3	47.8	324	92.5
7	6	32	23.0	48.3	325	92.8
8	6	32	22.2	48.2	316	90.4
9	6	32	22.0	47.7	324	92.7
10	6	32	22.7	48.5	324	92.7
11	6	32	21.6	47.9	326	93.3
12	6	31	21.3	48.4	326	93.1
13	9	32	21.7	47.7	329	94.1
14	9	32	22.1	48.0	326	93.3
15	9	32	21.8	47.9	331	94.7
16	9	31	21.7	48.2	329	93.9
17	9	32	21.8	48.1	334	95.4
18	9	33	22.2	47.5	338	96.5
19	9	32	22.1	48.4	340	97.1
20	9	32	22.2	48.1	326	93.2
21	9	32	22.7	47.8	332	94.8
	Average	32	22.1	48.1	329	93.9
	Std Dev	0	0.4	0.3	6	1.6
	Maximum	33	23.0	48.5	340	97.1
	Minimum	31	21.3	47.5	316	90.4
		N.I.				

N-value: 15


PDA-S Ver. 2022.35.2 - Printed: 7/5/2023

Diedrich D50 (SN 479)

28.5-30 M. Hatch Interval start: 7/3/2023

B-13 (PN 73235076)

SP: 0.492 k/ft3 AR: 1.18 in^2 LE: 38.50 ft EM: 30000 ksi WS: 16807.9 ft/s

F1: [512AWJ] 207.75 PDICAL (1) FF1 A3 (PR): [K5998] 403.535 mv/6.4v/5000g (1) VF1 F2: [512AWJ2] 208.76 PDICAL (1) FF1 A4 (PR): [K10493] 411.89 mv/6.4v/5000g (1) VF1

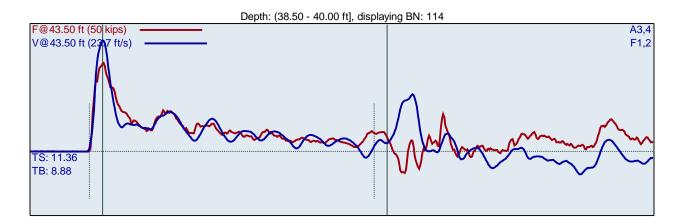
BL#	BC	FMX	VMX	BPM	EFV	ETR
	/6"	kips	ft/s	bpm	ft-lb	%
23	7	32	19.5	48.3	314	89.7
24	7	31	19.4	48.4	305	87.0
25	7	31	19.9	48.1	311	88.9
26	7	31	19.4	48.2	310	88.6
27	7	31	19.5	48.0	311	88.8
28	7	31	19.9	48.1	310	88.7
29	9	31	19.6	48.0	314	89.8
30	9	32	19.8	48.3	314	89.7
31	9	30	19.2	48.0	309	88.3
32	9	31	19.7	48.2	313	89.5
33	9	31	19.6	47.9	313	89.5
34	9	30	19.3	48.0	310	88.7
35	9	32	21.2	48.3	319	91.2
36	9	32	21.3	48.3	321	91.7
37	9	33	22.0	48.1	327	93.5
38	12	32	20.4	48.2	302	86.2
39	12	32	21.6	47.9	319	91.2
40	12	32	21.1	47.9	321	91.7
41	12	31	20.4	48.0	311	88.9
42	12	31	20.9	48.1	324	92.6
43	12	32	21.8	48.0	322	92.1
44	12	32	22.3	48.1	323	92.3
45	12	32	21.4	48.1	317	90.6
46	12	32	21.8	48.2	323	92.4
47	12	32	21.5	48.2	322	92.0
48	12	33	22.0	48.2	320	91.4
49	12	32	21.8	47.7	322	92.1

GRL Engineers, Inc.
SPT Analyzer Results

Page 3 of 7 PDA-S Ver. 2022.35.2 - Printed: 7/5/2023

Average	32	20.9	48.1	318	90.7
Std Dev	1	1.0	0.2	6	1.7
Maximum	33	22.3	48.3	327	93.5
Minimum	30	19.2	47.7	302	86.2
	N-1	value: 21			

Sample Interval Time: 32.40 seconds.


PDA-S Ver. 2022.35.2 - Printed: 7/5/2023

Diedrich D50 (SN 479)

28.5-30 M. Hatch Interval start: 7/3/2023

B-13 (PN 73235076)

SP: 0.492 k/ft3 AR: 1.18 in^2 LE: 43.50 ft EM: 30000 ksi WS: 16807.9 ft/s

F1: [512AWJ] 207.75 PDICAL (1) FF1 A3 (PR): [K5998] 403.535 mv/6.4v/5000g (1) VF1 F2: [512AWJ2] 208.76 PDICAL (1) FF1 A4 (PR): [K10493] 411.89 mv/6.4v/5000g (1) VF1

BL#	ВС	FMX	VMX	ВРМ	EFV	ETR
	/6"	kips	ft/s	bpm	ft-lb	%
51	17	35	21.7	47.4	339	96.8
52	17	35	21.7	48.4	336	96.0
53	17	35	21.7	48.2	336	96.1
54	17	34	21.7	48.2	337	96.3
55	17	34	21.7	48.1	339	96.9
56	17	34	21.2	48.1	337	96.2
57	17	34	21.2	48.3	336	95.9
58	17	33	21.2	48.4	322	92.1
59	17	35	22.2	48.1	343	98.0
60	17	33	21.2	48.0	324	92.6
61	17	34	21.8	48.3	337	96.3
62	17	34	21.7	48.0	331	94.5
63	17	33	21.3	48.2	335	95.6
64	17	34	21.8	48.2	336	95.9
65	17	34	22.1	48.0	329	94.0
66	17	33	21.4	48.3	336	96.1
67	19	34	21.7	48.5	331	94.7
68	19	33	21.3	47.8	336	95.9
69	19	33	21.2	48.2	334	95.3
70	19	35	22.9	47.8	344	98.4
71	19	34	22.1	48.1	339	96.9
72	19	33	20.9	48.3	333	95.0
73	19	33	20.8	48.1	331	94.4
74	19	34	20.7	47.9	329	94.1
75	19	34	20.9	48.2	331	94.6
76	19	34	21.1	47.7	343	97.9
77	19	35	20.9	48.3	332	94.9
78	19	35	21.1	48.3	336	96.1
79	19	34	20.5	48.1	338	96.5
80	19	34	20.6	48.4	338	96.7
81	19	34	20.4	48.3	326	93.2

GRL Engineers, In	C.			PDA-S Ver. 2	Pa 2022.35.2 - Printed	age 5 of 7 1: 7/5/2023
82	19	33	20.2	48.0	336	96.0
83	19	34	20.3	48.3	333	95.1
84	19	33	20.1	47.7	325	92.8
85	19	33	19.9	48.4	330	94.4
86	31	35	20.5	47.9	332	94.9
87	31	34	20.5	48.1	330	94.3
88	31	33	20.3	47.8	324	92.5
89	31	33	20.8	48.3	336	95.9
90	31	33	20.6	48.0	331	94.6
91	31	34	20.4	48.4	338	96.7
92	31	33	20.2	48.5	329	94.0
93	31	34	20.6	48.0	336	96.1
94	31	34	20.7	48.6	334	95.3
95	31	34	20.5	48.6	334	95.4
96	31	34	20.3	48.5	331	94.5
97	31	33	20.3	48.4	331	94.6
98	31	34	20.3	48.5	332	94.9
99	31	33	20.5	48.4	333	95.2
100	31	33	20.0	48.0	338	96.5
101	31	34	21.1	48.3	332	94.8
102	31	33	20.0	48.1	334	95.4
103	31	34	20.2	48.8	329	93.9
104	31	33	20.0	48.3	331	94.4
105	31	33	20.1	48.1	330	94.3
106	31	35	20.4	47.9	334	95.5
107	31	34	20.2	48.3	331	94.5
108	31	34	20.1	48.0	335	95.7
109	31	34	20.0	48.3	327	93.3
110	31	34	20.0	47.9	330	94.2
111	31	34	20.3	47.6	331	94.6
112	31	34	20.5	47.2	333	95.1
113	31	35	20.4	47.6	336	95.9
114	31	35	20.6	47.7	335	95.7
115	31	34	20.6	47.2	335	95.7
116	31	34	20.6	47.2	339	96.7
	Average	34	20.6	48.1	333	95.2
	Std Dev	1	0.6	0.4	4	1.2
	Maximum	35	22.9	48.8	344	98.4
	Minimum	33	19.9	47.2	324	92.5

Sample Interval Time: 81.06 seconds.

N-value: 50

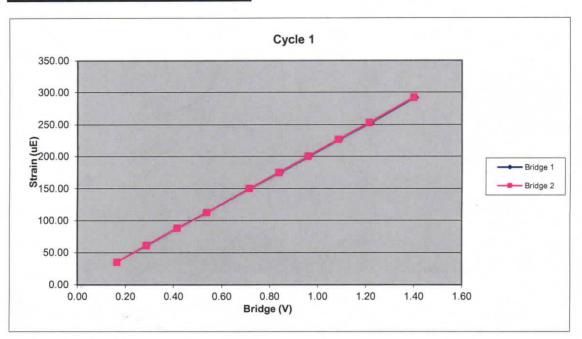
Page 6 of 7 PDA-S Ver. 2022.35.2 - Printed: 7/5/2023

Summary of SPT Test Results


Project: Diedrich D50 (SN 479), Test Date: 7/3/2023

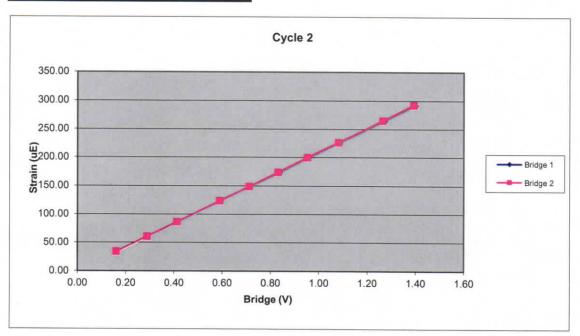
FMX: Maximum Force VMX: Maximum Velocity							FV: Maximum Energy TR: Energy Transfer	
BPM: Blows/Minute			Non					
Instr.	Blows	N	N60	Average	Average	Average	Average	Average
Length	Applied	Value	Value	FMX	VMX	BPM	EFV	ETR
ft	/6"			kips	ft/s	bpm	ft-lb	%
33.50	6-6-9	15	23	32	22.1	48.1	329	93.9
38.50	7-9-12	21	32	32	20.9	48.1	318	90.7
43.50	17-19-31	50	78	34	20.6	48.1	333	95.2
		Overall Ave	rage Values:	33	20.9	48.1	328	93.9
		Standa	rd Deviation:	1	0.9	0.3	8	2.3
		Overall Max	imum Value:	35	23.0	48.8	344	98.4
		Overall Min	imum Value:	30	19.2	47.2	302	86.2

Exhibit B


PDA Equipment Calibration

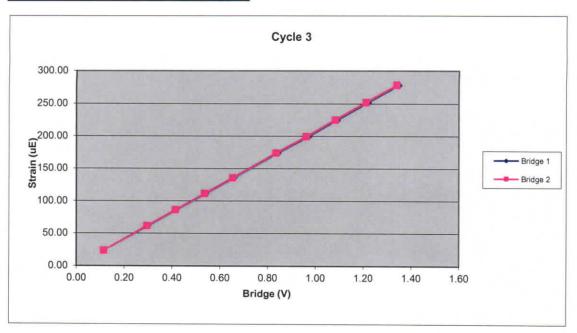
512AWJ		Cycle 1		
Sample	Force (lb)	Strain (µE)	Bridge 1 (V)	Bridge 2 (V)
1	0.00	0.00	0.00	0.00
2	1203.06	34.31	0.16	0.16
3	2126.16	60.40	0.29	0.29
4	3077.44	86.97	0.42	0.42
5	3982.41	111.72	0.54	0.54
6	5285.39	149.30	0.72	0.72
7	6200.50	174.57	0.84	0.84
8	7099.62	199.59	0.96	0.96
9	8021.85	226.03	1.09	1.08
10	8981.90	252.42	1.22	1.21
11	10350.08	291.62	1.40	1.40

Bridge 1		Bridge 2	
Force Calibration (lb/V)	7371.63	Force Calibration (lb/V)	7404.01
Offset	-2.95	Offset	-5.32
Correlation	1.000000	Correlation	0.999999
Strain Calibration (µE/V)	207.13	Strain Calibration (µE/V)	208.04
Offset	0.34	Offset	0.27
Correlation	0.999991	Correlation	0.999992


Force Strain Calibration	
EA (Kips)	35589.20
Offset	-14.99
Correlation	0.999992

512AWJ		Cycle 2		
Sample	Force (lb)	Strain (µE)	Bridge 1 (V)	Bridge 2 (V)
1	0.00	0.00	0.00	0.00
2	1195.16	33.02	0.16	0.16
3	2140.49	59.36	0.29	0.29
4	3060.77	84.68	0.41	0.41
5	4361.31	122.48	0.59	0.59
6	5276.03	147.78	0.71	0.71
7	6152.73	172.65	0.83	0.83
8	7048.15	198.82	0.96	0.95
9	8008.49	225.14	1.08	1.08
10	9364.20	264.06	1.27	1.26
11	10320.35	291.14	1.40	1.39

Bridge 1		Bridge 2	
Force Calibration (lb/V)	7383.19	Force Calibration (lb/V)	7408.85
Offset	1.99	Offset	1.61
Correlation	0.999999	Correlation	1.000000
Strain Calibration (µE/V)	209.13	Strain Calibration (µE/V)	209.86
Offset	-1.28	Offset	-1.29
Correlation	0.999988	Correlation	0.999991


Force Strain Calibration	
EA (Kips)	35302.85
Offset	47.38
Correlation	0.999989

	I Cv	cle 3			
512AWJ		. (=)		Bridge 2 (V)	
Sample	Force (lb)	0.00	Bridge 1 (V) 0.00	0.00	
1	0.00		0.11	0.11	
2	843.37	22.72	0.30	0.29	
3	2199.17	60.67		0.41	
4	3069.54	85.62	0.42		
4	3979.10	110.64	0.54	0.54	
5		135.11	0.66	0.65	
6	4849.18	173.33	0.84	0.84	
7	6197.28		0.97	0.96	
8	7134.13	198.98			
9	8033.64	224.83	1.09	1.08	
	8976.83	251.64	1.22	1.21	
10	9937.94	277.86	1.35	1.34	

Bridge 1		Bridge 2	
Force Calibration (lb/V)	7369.64	Force Calibration (lb/V)	7419.12
Offset	-2.56	Offset	0.17
Correlation	0.999999	Correlation	0.999999
Strain Calibration (µE/V)	206.99	Strain Calibration (µE/V)	208.38
Offset	-1.03	Offset	-0.95
Correlation	0.999995	Correlation	0.999995

Force Strain Calibration	
EA (Kips)	35602.66
Offset	34.21
Correlation	0.999994

Bridge Excitation (V) Shunt Resitor (ohm)

5 60.4k

Calibration Factors	512AWJ		
Bridge 1 (µE/V)	207.75	Bridge 2 (µE/V)	208.76
EA Factor (Kips)	35498.24	Area (in^2)	1.18

Calibrated by: ___ Calibrated Date:

8/31/2022

Pile Dynamics Inc 30725 Aurora Rd Solon, OH 44139

Traceable to N.I.S.T.

Accelerometer Calibration Certificate Pile Dynamics, Inc.

Calibrated by Pile Dynamics, Inc. Calibration performed on 03Aug2022

Serial No:

K5998

Temperature: 74.7 °F

Model:

PR

Humidity:

53%

Calibrated on: Channel 3 on 8G 5161 LE

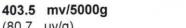
Ref Acc 1:

72505!

Cal on:

24Mar2022

1035 g's/volt

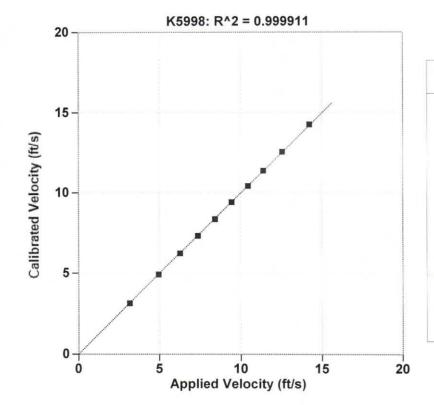

Ref Acc 2:

72517! 1049 g's/volt Cal on:

24Mar2022

Reference accelerometer calibrations are traceable to the United States National Institute of Standards and

Technology (NIST).



PDA CALIBRATION FACTOR

 $(80.7 \mu v/g)$

R^2: 0.999911 [Chip programmed]

Operator: William Johnson

ference Velocity	S/N K5998 Velocity
ft/s	ft/s
3.158	3.142
4.952	4.919
6.268	6.242
7.350	7.338
8.411	8.359
9.429	9.410
10.433	10.412
11.368	11.386
12.542	12.568
14.216	14.271

Maximum Acceleration: 959 g's

Accelerometer Calibration Certificate Pile Dynamics, Inc.

PDA CALIBRATION FACTOR

Operator: William Johnson

R^2: 0.999966 [Chip programmed]

411.9 mv/5000g $(82.4 \mu v/g)$

Calibrated by Pile Dynamics, Inc. Calibration performed on 03Aug2022

Serial No:

K10493

Temperature: 74.7 °F

Model:

PR

Humidity:

53%

Calibrated on: Channel 3 on 8G 5161 LE

Ref Acc 1:

72505!

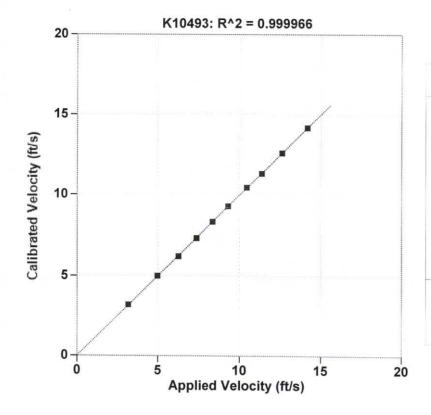
Cal on:

24Mar2022

1035 g's/volt

1049 g's/volt

Ref Acc 2:


72517!

Cal on:

24Mar2022

Reference accelerometer calibrations are traceable to the United States National Institute of Standards and

Technology (NIST).

Reference		10493
Velocity	Ve	elocity
EL I-		241

Velocity	S/N K10493 Velocity
ft/s	ft/s
3.172	3.199
4.972	4.995
6.253	6.217
7.351	7.341
8.342	8.345
9.293	9.296
10.433	10.456
11.350	11.329
12.605	12.608
14.169	14.170

Maximum Acceleration: 952 g's